

Advanced Robotics with the Toddler
Student Guide

Version 1.0

Note regarding the accuracy of this text:
Many efforts were taken to ensure the accuracy of this text and the
experiments, but the potential for errors still exists. If you find
errors or any subject requiring additional clarification, please report
this to stampsinclass@parallaxinc.com so we can continue to
improve the quality of our documentation.

Warranty

Parallax warrants its products against defects in materials and workmanship for a period of 90 days. If you discover a defect, Parallax
will, at its option, repair, replace, or refund the purchase price. Simply call for a Return Merchandise Authorization (RMA) number,
write the number on the outside of the box and send it back to Parallax. Please include your name, telephone number, shipping
address, and a description of the problem. We will return your product, or its replacement, using the same shipping method used to
ship the product to Parallax.

14-Day Money Back Guarantee

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a full refund. Parallax
will refund the purchase price of the product, excluding shipping / handling costs. This does not apply if the product has been altered
or damaged.

Copyrights and Trademarks

This documentation is Copyright 2002 by Parallax, Inc. Toddler is a trademark of Parallax, pending registration. BASIC Stamp is a
registered trademark of Parallax, Inc. If you decide to use the name BASIC Stamp on your web page or in printed material, you must
state: "BASIC Stamp is a registered trademark of Parallax, Inc." Other brand and product names are trademarks or registered
trademarks of their respective holders.

Disclaimer of Liability

Parallax, Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or under any
legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, and any costs or
recovering, reprogramming, or reproducing any data stored in or used with Parallax products. Parallax is also not responsible for any
personal damage, including that to life and health, resulting from use of any of our products. You take full responsibility for your BASIC
Stamp application, no matter how life threatening it may be.

Internet Access

We maintain Internet systems for your use. These may be used to obtain software, communicate with members of Parallax, and
communicate with other customers. Access information is shown below:

 E-mail: stampsinclass@parallaxinc.com
 Web: http://www.parallaxinc.com and http://www.stampsinclass.com

Internet BASIC Stamp Discussion List

We maintain two e-mail discussion lists for people interested in BASIC Stamps. The “BASIC Stamp” list server includes engineers,
hobbyists, and enthusiasts. The list works like this: lots of people subscribe to the list, and then all questions and answers to the list are
distributed to all subscribers. It’s a fun, fast, and free way to discuss BASIC Stamp issues and get answers to technical questions. This
list generates about 40 messages per day. Subscribe at www.yahoogroups.com under the group name “basicstamps”.

The Stamps in Class list is for students and educators who wish to share educational ideas. This list generates about five messages per
day. Subscribe at www.yahoogroups.com under the name “stampsinclass”.

Contents

Page i

Table of Contents

Preface... iii

Recognitions ...iii
Audience and Teacher’s Guides ...iv
Copyright and Reproduction...v

Experiment #1: Assembling the Toddler Robot... 1
The Newest Member of the Family...1
Let’s Build the Toddler...1

Tools Required..1
A Note About Parts in the Toddler Kit ..2
Challenges... 18

Experiment #2: Taking your First Steps... 19
Servo Control Basics .. 19

How a Servo Works.. 19
Time Measurement and Voltage Levels ... 19

Many Ways to Move the Toddler .. 22
Approach #1: Brute Force... 22
Approach #2: Data Tables ... 22
Approach #3: State Transitions... 22

Theory of Operation ... 23
Activity #1: Basic Walking Movements... 26
Activity #2: Walking Backwards... 35
Activity #3: Using a DATA Table to Store Movements .. 39
Activity #4: Using State Transitions For Movements.. 43

Challenges ... 50
Experiment #3: Turning Around .. 51

Activity #1: Making a Turn... 51
Activity #2: Different Turns... 56

Challenges ... 57
Experiment #4: Coordinated Walking .. 59

Activity #1: Which Table?... 59
Activity #2: Figure 8s and Square Dancing.. 62

Challenges ... 70
Experiment #5: Following Light ... 71

Activity #1: Building and Testing Photosensitive Eyes .. 72
Programming to Measure the Resistance .. 74
How the Photoresistor Display Works .. 75

Contents

Page ii

Your Turn...76
Activity #2: A Light Compass ...77

Programming the Toddler to Point at the Light ..77
How the Light Compass Works..83
Your Turn...84

Activity #3: Following The Light ..84
How the Light Follower Program Works ...90

Challenges..92
Experiment #6: Object Avoidance with Infrared ..93

Using Infrared Headlights to See the Road...93
Infrared Headlights...93
The Freqout Trick...94

Activity #1: Building and Testing the New IR Transmitter/Detector..95
Programming the Real-Life Situation that Gets Emulated...97
How the IR Pairs Display Program Works ...99

Activity #2: Object Detection and Avoidance..100
Real-Time IR Navigation ..100
How IR Roaming by Numbers in Real-Time Works ...106

Challenges..108
Experiment #7: Staying on the Table.. 109

What’s a Frequency Sweep?..109
Activity #1: Testing the Frequency Sweep ...109

Programming the IR Distance Gage..110
How the Distance Gage Program Works...113
Your Turn...115

Activity #2: The Drop-off Detector..116
Programming for Drop-Off Detection...117
Aliased Variables..124
How the Drop-off Avoidance Program Works ..126

Activity #3: Toddler Shadow Walker ...128
Programming the Toddler Shadow Walker ..129
How the Shadow Walker Program Works ..137

Challenges..139
Appendix A: Parts Listing and Sources .. 141
Appendix B: Toddler Printed Circuit Board Schematic ... 143

Preface

Page iii

Preface

Walking robots remain largely unexplored in the area of hobby and education. The limitations include
handling diverse terrain including stairs, more difficult programming algorithms and feedback, and generally
more complex mechanical designs. This may be one of the reason most of our robots have wheels. However,
people have a natural tendency to appreciate a walking robot: they seem more like human beings; they offer
more entertainment value since they’re fun to watch; and to make a biped robot walk successfully is a
challenge worthy to pursue the concept.

The Toddler robot simplifies the walking robot concept. While the Toddler certainly won’t be caring

for the elderly, vacuuming the house or driving you to the store, it will provide a first exposure to the concept
of a programmable biped. Two servos will prove to be quite limiting if you master this robot, but along the
way you’ll discover the complexities and rewards associated with learning to program a walker. Walking
robots introduce embedded control in a positive, fun and friendly way.

The programming of Toddler is not trivial. When you are done with the Toddler experiments you’ll be

a much better BASIC Stamp programmer. We’d suggest that you first try the Boe-Bot projects as a
prerequisite. If this isn’t possible, take your time to absorb and understand how the program structures work
and how PBASIC is utilized. Keep your BASIC Stamp Manual Version 2.0 handy to look up PBASIC syntax that
isn’t obviously understood. Seeing examples in a non-robotic use is often helpful.

If you need help, call or e-mail Parallax for technical support. We’d be pleased to help get your

Toddler walking the way you want it to.

Recognitions

Although Parallax designed the Toddler, we recognize that the first time we have seen the two-servo

concept employed for a walking robot is British robotics designer David Buckley’s “Big Foot”. Though the basic
concept is simple, our research shows that Mr. Buckley created the ingenious use of two servos for a walker.
Big Foot is a plywood kit available through Milford Instruments (www.milinst.com) of the United Kingdom.
David Buckley endorses the Parallax Toddler robot and contributed to the Toddler design.

Preface

Page iv

David Buckley’s Big Foot

Parallax’s Early Toddler Design

This curriculum was authored by Parallax, Inc. and Bill Wong of Pennsylvania. Bill is an editor with

Electronic Design magazine and a serious BASIC Stamp robotics enthusiast. His daughter has won several
County and State awards with her maze solving robotic projects.

Audience and Teacher’s Guide

Students as young as 14 years old could be able to build and program the Parallax Toddler. Because
of the Toddler’s more extensive mechanical system and more complex programming we believe that the
youngest student to have success with this kit would probably be about 12 years old. If you have experience
otherwise please let us know at stampsinclass@parallaxinc.com. The Advanced Robotics with the Toddler text
presently has no teacher’s guide. Based on demand we may elect to produce the answers to challenge
questions posed in this text.

Preface

Page v

Educational Concepts from the Toddler

Educators always ask Parallax what they will learn from our different curriculum. The Toddler is

considered an advanced robotic project and generally will instruct the following concepts:

• Interaction between mechanical and electrical systems and the ability to tune hardware or adjust
software to obtain desired results

• Advanced programming skills with the BASIC Stamp 2. An efficient Toddler program makes use of
little-used Stamp programming tricks pertaining to the DATA statement, program routines that are
reused and “configured” prior to execution, variable aliasing, general sound programming practices
(constant/variable definitions that allow for program customization in just a few places rather than
throughout an entire program)

• A step-wise process which starts with the basics and builds to something more complex and
ultimately more useful

Copyright and Reproduction

Stamps in Class lessons are copyright  Parallax 2002. Parallax grants every person conditional

rights to download, duplicate, and distribute this text without our permission. The condition is that this text,
or any portion thereof, should not be duplicated for commercial use resulting in expenses to the user beyond
the marginal cost of printing. That is, nobody should profit from duplication of this text. Preferably,
duplication should have no expense to the student. Any educational institution wishing to produce duplicates
for its students may do so without our permission. This text is also available in printed format from Parallax.
Because we print the text in volume, the consumer price is often less than typical xerographic duplication
charges. This text may be translated into any language with the prior permission of Parallax, Inc. obtained
through stampsinclass@parallaxinc.com.

Preface

Page vi

Experiment #1: Assembling the Toddler Robot

Advanced Robotics with the Toddler 1.0 • Page Page 11

The Newest Member of the Family

No matter how easy it looks, you’ll soon realize that the
mechanical movements and BASIC Stamp code required to
make a two-servo biped move in a distinct fashion is more
complex than it’s rolling counterpart, the Boe-Bot.

The Toddler is capable of doing many things a rolling robot can do if you’ve got the patience to tune the
mechanics and software. Not only is the robot more entertaining than a rolling robot, you’ll become a more
proficient programmer as you learn to exploit the BASIC Stamp’s capabilities. The Toddler demonstrates the
importance of a PBASIC program that uses constants and variables, program pointers and EEPROM access for
data storage. A well-designed program means you can easily tune the software for the right mechanical
control in just a few places rather than rewriting your entire program.

The Toddler’s motion is controlled using two servo motors (the type normally used in remote controlled
airplanes). The Toddler’s top servo motor is used to rotate the robot's center of gravity back and forth over
the two feet, and the bottom motor moves both legs back and forth. The legs use a simple parallel linkage to
the ankles that keeps the feet parallel to the ground. Both legs are linked together through the same motor so
that as one leg move forward, the other moves backwards.

By controlling one motor at a time the robot can move forward, backward, and turn either left or right. By
blending the control of both motors the robot can do move in a more coordinated fashion with smooth
movements.

A surface-mounted BASIC Stamp 2 module controls the Toddler. The BASIC Stamp 2 is used throughout the
Stamps in Class educational series and provides plenty of program space, speed and memory for use with a
Toddler.

Let’s Build the Toddler

The Toddler may be assembled a number of ways depending on the surface on which the robot walks, the type
of additions you make with sensors and hardware and the speed which you program to robot to walk. The
default assembly method is appropriate for hard, level surfaces and will be used to demonstrate code
throughout this text.

Tools Required

You’ll need a screwdriver and a pair of pliers and to build the Toddler.

Experiment #1:
Assembling the
Toddler Robot

Experiment #1: Assembling the Toddler Robot

Page Page 22 • Advanced Robotics with the Toddler 1.0

A Note About Parts in the Toddler Kit

Appendix A includes a parts listing for the Toddler. These instructions refer to different pieces of hardware. If
you are missing parts from your Toddler kit Parallax will replace them free of charge; if you break parts or
want additional hardware for your customized Toddler you can order any piece on-line from our Component
Shop (www.parallaxinc.com/componentshop).

If you have trouble identifying the type of part referred to in these instructions, see the color back cover of
this text that shows each part with a colored picture and Parallax stock code.

Step #1: Install Top “Tilt” Servo

Parts Required:

• (4) 4/40 3/8” long pan-head machine screws
• (4) 4/40 nuts
• Toddler Body
• Toddler Servo Motor

Install the servo in the Toddler Body with the shaft
down as shown in the picture. Position the servo
squarely.

Using four (4) 4/40 3/8” pan-head machine screws
and (4) 4/40 nuts, screw the tilt servo into the body.
The easiest way to do this is to hold the nut with one
finger while turning the screwdriver with the other
hand.

Experiment #1: Assembling the Toddler Robot

Advanced Robotics with the Toddler 1.0 • Page Page 33

Step #2: Install Bottom “Stride” Servo

Parts required:

• (4) 4/40 3/8” long pan-head machine screws
• (4) 4/40 nuts
• (1) Toddler Servo Motor

Install the bottom servo with the shaft oriented
towards the front of the robot.

Using four (4) 4/40 3/8” machine screws and (4) 4/40
nuts, screw the stride servo into the body.

Step #3: Electrically Center Servos

Parts required:

• Battery Box
• (4) AA Batteries (not included)
• Serial Cable
• BASIC Stamp software

The servos should be “centered” prior to any
further Toddler assembly. This will ease any
fine-tuning adjustments by allowing them to
be made only in software. Don’t skip this
step – it will make future adjustments easier.

Experiment #1: Assembling the Toddler Robot

Page Page 44 • Advanced Robotics with the Toddler 1.0

(Continued) Step #3: Electrically Center Servos

Plug the two servos into the Toddler printed circuit
board “A – Servos – B” connector. The GND label on
the board connects to the black servo lead.

Install four batteries in the battery pack and take
the entire assembly to your computer. The battery
pack’s white wire lead connects to the Toddler
board’s + terminal block. Use a screwdriver to
connect these wires.

Using the serial cable, connect the Toddler board to
the serial port of your computer. This connection is
shown in this picture.

The Toddler has a three-position power switch. The
state of each position is shown below. The three-
position switch has a middle position that powers
the entire circuit except servos. A complete
schematic of the Toddler is included in Appendix B.

 Position O – No Power
 Position 1 – Power to everything except servos
 Position 2 – Everything is powered

Place the power switch in Position 2. The next step
is to program the BASIC Stamp.

Gnd
Red
P13
Gnd
Red
P12

X4X3

Vdd VssVin

P15
P14
P13
P12
P11
P10
P9

P5
P4
P3
P2
P1
P0

X2

Reset

 www.parallaxinc.com

Gnd
P3
P2
Gnd
P1
P0

+ 6Vdc -

©2002
X5

+ - P11-P10
LEFT IR SET

X6

-P15 + - P14
RIGHT IR SET

Rev A

Power

A
S

ervos
B

 A
ux2 A

ux1
—

—

X1

” ”Toddler

Experiment #1: Assembling the Toddler Robot

Advanced Robotics with the Toddler 1.0 • Page Page 55

Open the BASIC Stamp Windows editor. 1 Write the following piece of code that will center both servos:2

' -----[Title]--
' Toddler Program 1.1: Servo Centering
' {$STAMP BS2}

' -----[Constants]--

TiltServo CON 12 ' Tilting servo on P12
StrideServo CON 13 ' Stride servo on P13

' -----[Main Code]--

Center: ' Center both servos with 1500 us pulses
 PULSOUT TiltServo, 750
 PULSOUT StrideServo, 750
 PAUSE 30 ' Wait 25 ms
GOTO Center

Download your code using the Run I Run menu or by pressing the �button on the toolbar. This program runs
in an endless loop. When the servos stop moving (this will happen almost instantaneously) move the power
switch to off.

Figure 1.1: Windows Editor with Toddler Program 1.1 Servo Centering

1 The Parallax BASIC Stamp Manual 2.0 includes a “Quick Start” section that details how to open and launch the BASIC Stamp

Windows editor.
2 Source code in this text is available in a zipped file for download from www.parallaxinc.com/Toddler

Experiment #1: Assembling the Toddler Robot

Page Page 66 • Advanced Robotics with the Toddler 1.0

Turn the power switch to position 0. Disconnect the servos from the Toddler board. Remove the batteries
from the battery box and disconnect the leads from the Toddler’s screw terminal.

Step #4: Install the Servo Horns

Parts required:

• Two servo horns
• (2) Small black screws to hold horn to servo

The servo horns should be installed as straight as the
spline allows without turning the motor.

Secure each servo horn with the small black Phillips
head screw using a screwdriver.

Step #5: Install Brass Wire Keepers on Stride Servo

Parts required:

• (2) Brass wire keepers (brass holder, set screw and

holding grommet) packaged in a bag

Attach the two brass wire keepers on the outermost
holes of the bottom servo’s control horn. Using pliers,
press the rubber “keeper” onto the post of the brass
wire keeper.

Put the two small screws into the threads of the brass
wire keeper so they don’t get lost.

Experiment #1: Assembling the Toddler Robot

Advanced Robotics with the Toddler 1.0 • Page Page 77

Final installed brass wire keepers. The brass wire keepers are for the bottom (stride)

servo only. Don’t install them on the tilt servo.

Step #7: Install Top Plate

Parts required:

• Toddler Top Plate
• (4) 4/40 3/8” flathead machine screws
• (4) 4/40 nuts

The top plate is most easily installed by turning the
Toddler body upside down. Position a 4/40 nut over the
hole and insert a 4/40 3/8” flathead screw through the
top plate from the bottom. Hold the nut with one hand
and tighten the screw with the other hand. Repeat
process for three more holes.

Note: This step uses the “flathead” countersunk 4/40
screws, not the flat “panhead” screws.

Experiment #1: Assembling the Toddler Robot

Page Page 88 • Advanced Robotics with the Toddler 1.0

Step #8: Install Leg Rods

Parts required:

• (2) 3/16” 3” long brass rods
• (4) plastic washers

Slide the two 3” 3/16” brass rods through the
two holes in the Toddler’s body.

Slide a plastic washer over each rod. This
washer will keep the Toddler’s legs from
rubbing against the body.

Experiment #1: Assembling the Toddler Robot

Advanced Robotics with the Toddler 1.0 • Page Page 99

Step #9: Slide Legs onto Toddler
Body

Parts required:

• (4) Toddler legs

Slide the four Toddler legs onto the
ends of the brass rods going through
the body.

Step #10: Secure Legs to Toddler Body

Parts required:

• (4) 3/16” collars with setscrew
• L hex-key wrench in collar package

Find the package of 3/16” metal collars and L-key.

Slide the collars onto the brass rod. Tighten each
collar using the L-key wrench. If the setscrew
doesn’t seem to tighten, slightly angle the wrench
to prevent stripping of the set screw or wrench.
Make sure the legs move freely when you’re done.

Experiment #1: Assembling the Toddler Robot

Page Page 1010 • Advanced Robotics with the Toddler 1.0

Step #11: Assemble Stride
Linkages

Parts required:

• (2) 4/40 plastic wire keepers
• (2) 3/8” 4/40 panhead machine

screws
• (2) brass right-angle wires

This is a two step process. First,
insert a 3/8” 4/40 panhead screw
through the holes on the rear left
leg. Tighten the screw into the
plastic right-angle bracket. Repeat
for the process for the rear right
leg. Rotate the body 180 degrees.

Using the two right-angle brass
wires, slide the straight end
through the brass wire keeper
hole. Insert the short end through
the top of the plastic right-angle
bracket. Tighten the screw to hold
the wire.

Adjust the linkages so the legs are
vertical, not slanted to either side.
Electrically center the servos again
if necessary if the servo was
accidentally moved.

Repeat for the other rear side.

Experiment #1: Assembling the Toddler Robot

Advanced Robotics with the Toddler 1.0 • Page Page 1111

Step #12: Attach Ankles

Parts required:

• (2) ankle parts
• (4) 4/40 ¼” panhead machine screws

Attach the ankles to the legs using four 4/40 ¼”
screws. The longer part of the ankle should be
oriented towards the back of the Toddler’s body.
This placement moves the weight of the robot
forward and provides better overall control.

Step #13: Attach Feet

Parts required:

• Toddler left foot
• Toddler right foot
• (4) 4/40 plastic alan-head screws
• 3/32” hex L-key wrench

Line up the ankle into the foot’s 3rd hole from the
instep. If it is too tight slightly bend the tabs of the
feet outward.

Attach the left ankle to the left foot using two
plastic 4/40 screws and the 3/32” L-key wrench.
These screws have a round head that acts as a
bearing surface on the robot’s foot. Repeat for
the right side. Ensure free tilting of each foot
before proceeding to the next step.

Experiment #1: Assembling the Toddler Robot

Page Page 1212 • Advanced Robotics with the Toddler 1.0

Step #14: Install Ball Joints

Parts required:

• (4) ball joints (ball joint with post, nut)

Install a ball joint on the outermost hole of each
foot. Securing the nut may require a small wrench
to tighten the ball joint unless you have a pair of
needle nose pliers. One way to do this is to hold the
nut with a finger and turn the ball joint until tight.

Install two ball joints on the tilting servo control
horn. Use the outermost two holes for these ball
joints.

Experiment #1: Assembling the Toddler Robot

Advanced Robotics with the Toddler 1.0 • Page Page 1313

Step #15: Install Tilting Rods

Parts required:

• (2) .090” diameter 5.4” brass rod, 2/56 thread on each end
• (4) ball joint plastic cups with 2/56 thread

Thread two plastic ball joint cups onto the ends of the 5.4”
brass rod. Place the rod next to the control horn and foot
for sizing.

To properly position the ball joints make the finished piece
about 1/16” longer than it needs to be as the robot stands
straight up; this ensures that the out step of the feet will be
firm on the ground and aids with turning.

When you’ve got the length about right, snap the rod onto
the foot and servo control horn.

Repeat for the other side.

There is an easy way to remove the ball cups from the ball
joint. If you need to make adjustments simply place a
screwdriver between the ball cup and the Toddler’s foot and
carefully pry (snap) it off. It should pop off and can be
pressed back on after you make a few turns to adjust.

Experiment #1: Assembling the Toddler Robot

Page Page 1414 • Advanced Robotics with the Toddler 1.0

Step #16: Install Tilting Rods (continued)

When you’re done with this step your robot should look like
this one.

When you pick up the robot, verify that the robot’s feet are
flat on the ground, or that the outsteps are angled slightly
downward. Electronically center the servos with the BASIC
Stamp if needed.

Step #17: Install Battery Pack

Parts required:

• Battery box
• (2) 4/40 3/8” long flathead countersunk machine

screws
• (2) 4/40 nuts

Stand the Toddler up on its feet.

Install the plastic battery pack using two 4/40 3/8”
flathead screws and nuts. The flathead screws will be
countersunk into the battery pack when tightened. The
screws should be out of the way of the batteries.

Experiment #1: Assembling the Toddler Robot

Advanced Robotics with the Toddler 1.0 • Page Page 1515

Step #18: Install Standoffs

Parts required:

• (4) 1” female/female 4/40 standoffs
• (4) 4/40 ¼” panhead machine screws

Using four 4/40 ¼” screws install the four 1”
standoffs on the top plate.

Step #19: Connect Toddler Board to
Battery Pack

Parts required:

• Toddler printed circuit board

The battery pack’s white lead connects to the
Toddler board’s + terminal. The other lead
connects to the – terminal. Using a
screwdriver secure both wires.

Experiment #1: Assembling the Toddler Robot

Page Page 1616 • Advanced Robotics with the Toddler 1.0

Step #20: Install Batteries

Parts required (but not included in the
Toddler kit):

• (4) AA batteries

Install 4 AA batteries. Slide the Toddler’s
switch to Position 1 to verify that power is
properly connected. The green power light
will turn on.

Experiment #1: Assembling the Toddler Robot

Advanced Robotics with the Toddler 1.0 • Page Page 1717

Step #21: Mount Toddler Board

Parts required:

• (4) 4/40 ¼” panhead machine

screws

Using four 4/40 ¼” panhead
machine screws mount the
Toddler board on the top of the
standoffs.

Connect the bottom servo (stride)
to P12 on the Toddler board.
Connect the front servo (tilt) to
P13 on the Toddler board.

You’re ready to rock!

As a final step, repeat Step #3 to center the servos. The Toddler should stand flat on the ground with both feet
aligned. When you pick the robot up, the feet outsteps may be slightly tilted downward. Adjustments can be
made to the ball joints. The easiest way to remove the ball joint from the socket is to carefully pry it with the
screwdriver.

Experiment #1: Assembling the Toddler Robot

Page Page 1818 • Advanced Robotics with the Toddler 1.0

Experiment #1 has no challenges. Plenty of them lie ahead!

Challenges

Experiment #2: Taking your First Steps

Advanced Robotics with the Toddler 1.0 • Page Page 1919

Making the Toddler walk requires some patience – the Toddler
has more than 30 different individual movements. In this
experiment you’ll learn how to make the robot walk forward
and backward by writing several routines. In Experiment #2
examples the movements are not blended – first you tilt then
you stride. This is different than the way you walk.

After forward and backward movements are mastered we’ll try making some turns. You’ll see that linking
movements requires attention to the previous step your Toddler took. For example, you can only move your
left leg forward if it is off the ground.

When the basics are mastered, you’ll learn to store movements and sub-movements in EEPROM and write
more efficient code. All of this section is “open-loop” – there’s no feedback to determine whether or not you
have instructed your Toddler to lean to far left or right or even to look for obstacles.

Servo Control Basics

How a Servo Works

Normal (un-modified) hobby servos are very popular for controlling the steering systems in radio-controlled
cars, boats, and planes. These servos are designed to control the position of something such as a steering flap
on a radio-controlled airplane. Their range of motion is typically 90° to 270°, and they are great for
applications where inexpensive, accurate high-torque positioning motion is required. The position of these
servos is controlled by an electronic signal called a pulse train, which you’ll get some first hand experience
with shortly. An un-modified hobby servo has built-in mechanical stoppers to prevent it from turning beyond
its 90° or 270° range of motion. It also has internal mechanical linkages for position feedback so that the
electronic circuit that controls the DC motor inside the servo knows where to turn to in response to a pulse
train.

Time Measurements and Voltage Levels

Throughout this student guide, amounts of time will be referred to in units of seconds (s), milliseconds (ms),
and microseconds (us). Seconds are abbreviated with the lower-case letter “s”. So, one second is written as
1 s. Milliseconds are abbreviated as ms, and it means one one-thousandth of a second. One microsecond is
one one-millionth of a second. Table 2.1 shows how Milliseconds and Microseconds equate in terms of both
fractions and scientific notation.

Experiment #2:
Taking your First
Steps

Experiment #2: Taking your First Steps

Page Page 2020 • Advanced Robotics with the Toddler 1.0

Table 2.1: Milliseconds and Microseconds and Toddler PCB Voltage Labels

Milliseconds and
Microseconds

s3-101s
1000

1
ms1 ×==

s6-101s
1,000,000

1
s1 ×==µ

Voltages and Toddler
PCB Labels

(ground)V0Vss =

)(regulatedV5Vdd =
ed)(unregulatV6Vin =

A voltage level is measured in volts, which is abbreviated with an upper case V. The Toddler board has sockets
labeled Vss, Vdd, and Vin. Vss is called the system ground or reference voltage. When the battery pack is
plugged in, Vss is connected to its negative terminal. Vin is unregulated 6 V (from four AA batteries), and it is
connected to the positive terminal of the battery pack. Vdd is regulated to 5 V by the Toddler’s onboard
voltage regulator, and it will be used with Vss to supply power to circuits built on the Toddler’s breadboard.

!

Only use the Vdd sockets above the Toddler’s breadboard for the Activities in
this workbook. Do not use the Vdd on the 20-pin app-mod header.

The control signal the BASIC Stamp sends to the servo’s control line is called a “pulse train,” and an example
of one is shown in Figure 2.1. The BASIC Stamp can be programmed to produce this waveform using any of its
I/O pins. In this example, the BASIC Stamp sends a 1500 us pulse to P12 (stride servo) and P13 (tilt servo).
When the pulse is done being executed the signal pin is low. Then, the BASIC Stamp sends a 25 ms pause.

Experiment #2: Taking your First Steps

Advanced Robotics with the Toddler 1.0 • Page Page 2121

Figure 2.1: Servo Pulse Train

+ 5 VDC

 0 VDC

TiltServo

25 ms

1500 us1500 us

25 ms
last pulsefirst pulse

1500 us

25 ms

1500 us 1500 us

+ 5 VDC

 0 VDC

StrideServo

25 ms

1500 us1500 us

25 ms
last pulsefirst pulse

1500 us

25 ms

1500 us 1500 us

This pulse train has a 1500 us high time and a 25 ms low time. The high time is the main ingredient for
controlling a servo’s motion, and it is most commonly referred to as the pulse width. Since these pulses go
from low to high (0 V to 5 V) for a certain amount of time, they are called positive pulses. Negative pulses
would involve a resting state that’s high with pulses that drop low.

The ideal pause between servo pulses can be about 10-40 ms without adversely affecting the servo’s
performance.

!

The BASIC Stamp 2’s PULSOUT command works in increments of 2
microseconds. For example, the following snippet of code makes a 1500 us
pulse:

 PULSOUT P13, 750 ‘ 1500 us pulse on pin 13

Experiment #2: Taking your First Steps

Page Page 2222 • Advanced Robotics with the Toddler 1.0

Many Ways to Move the Toddler

Programming is a cross between an art and science. There are usually many different ways a program can be
written to get the same effect. Some are more efficient in program size and other are more efficient in
performance.

In this chapter, we look at a number of different actions the Toddler can perform including walking forward
and backward. The Toddler robot can make 36 different movements. These different movements must be
linked together in order to walk. Each movement has a selection of possible precedent movements and a
selection of possible follow-up movements.

We will also take a look at a number of different programs that perform these functions using different
approaches. We present three approaches for programming the Toddler’s movements. Most will prefer the
last method. It uses more complicated programming techniques but it is more flexible and easier to use.
Experienced programmers will want to jump right to the last approach but it is worth checking out all three.

Approach #1: Brute Force

This approach uses explicit subroutines for each movement. Calling these routines performs complex
movements. It provides an obvious way of controlling the Toddler but enumerating all 36 movements
consumes lots of precious program space. It also makes changes unwieldy. For example, implementing
variable speed movements requires changes to all movement routines.

Approach #2: Data Tables

One obvious approach to consolidating 36 similar routines is to determine commonality within the routines
and generating one or more that parametrically perform the same functions. Putting the parameters into
data tables is one way to do this. Tables tend to be more concise in terms of construction compared to more
explicit routines because the tables only contain parameters.

Approach #3: State Transitions

The DATA tables approach is really a consolidation of the first approach. The programmer must remember
where the robot’s feet are and call the appropriate routine or fill in the table with the proper parameters.
The state transition approach is different because the Toddler keeps track of where its feet are. Transition
actions are now used to move from one state to another. There are basically three tilt and three stride
actions. That is significantly less than the 36 movements used in the other approaches.

Experiment #2: Taking your First Steps

Advanced Robotics with the Toddler 1.0 • Page Page 2323

Theory of Operation

Humans take to walking naturally but the actual act is extremely complex. It requires the coordinated actions
of muscles and these actions are controlled by a very complex brain with a very sophisticated array of inputs
from vision to touch. The Toddler is at the other end of the spectrum. It has only two control servos with a
limited range of motion and essentially no feedback. Although the Toddler will not learn to walk of its own
accord, it can be programmed relatively easily once you understand the basics.

Humans usually walk using a controlled fall. The body tilts slightly forward and a leg is moved in front to stop
the fall. The process is repeated as the person proceeds to move forward. The effect is more noticeable when
a person is running. It is easy to see why a person falls on the ground if they misstep.

It is possible for humans to shuffle along like the Toddler. In this case the foot is placed in front and the body
is pulled along but it is hard to do. Try it. Tilting your body forward makes it easier but this is essentially a
controlled fall.

The Toddler can fall over but its movement is done via shuffling and balance. This is necessary because of the
limited range of movement. Essentially the Toddler can lean to either side or stand flat with both feet on the
floor. Either the left or right foot can be in front, in which case the other is in the back, or they can be side-
by-side. There are essentially 9 basic foot orientations and there are 4 transitions from each orientation to
another valid orientation for a total of 36 transitions or movements.

Even with this limited range of actions, the Toddler can move about a flat surface with relative ease. Its
restrictions do limit the Toddler to two basic kinds of movements though: walking in a straight line and
pivoting. Still, this can get the Toddler from point A to point B.

Walking is essentially a four phase process.

1. Tilt to one side
2. Move the leg that is not on the ground
3. Tilt to the other side
4. Move the leg that is not on the ground

This process essentially takes one step. The direction the leg moves controls the direction and the distance
traveled is controlled by how far the legs are moved. The speed of the Toddler depends on how fast the
actions are performed and how far the legs move.

Assuming the Toddler is not programmed to tilt too far in one direction, it will remain balanced. This means
the process can be stopped and restarted later at any point. This differs from humans in a controlled fall
because the foot must be there to stop the fall.

Experiment #2: Taking your First Steps

Page Page 2424 • Advanced Robotics with the Toddler 1.0

Momentum plays a key part in writing programs to control the Toddler. The servo motors provide precise leg
position control. They can move the legs slowly or quickly and can stop them at any location along the way.
The Toddler also remains balanced even when tilted far to one side but this limit is difficult to attain when
moving quickly because of momentum. Speed up the leg movement and the amount of momentum the leg has
increases. Trying to stop it at the balance limit is only possible if the leg has little momentum. Too much
momentum at that point and the Toddler falls over.

For turns the Toddler can only pivot. It does not have a knee or hip joint like a human. The Toddler’s feet
always face forward so it cannot turn its feet to change direction. This does not restrict the Toddle to straight
line motion though. By pivoting, the Toddler can move from Point A to Point B in a straight line, pivot in the
direction of Point C and then walk in that direction to Point C.

Pivoting is also a four-phase process.

1. Tilt to one side
2. Move the leg that is not on the ground
3. Put both feet on the ground
4. Move the legs opposite of each other

This process works because of friction. The actual pivot occurs in the last phase where both feet are on the
ground. Essentially one leg pulls the Toddler forward while the other pulls it backward. This causes the Toddler
to pivot. The amount of rotation is a factor of leg placement and the level of friction between the Toddler’s
feet and the surface it is on. Low friction results in minimal pivoting. Too much friction and the Toddler can
fall over.

The Toddler is essentially restricted to flat surfaces. The type of surface affects the amount of friction
between the Toddler and the surface. Wood, hard carpet and kitchen floors are a good surface while ice and
rubber are not. Dense carpet works well. Putting different surfaces on the bottom of the Toddler’s feet can
increase the level of friction. This is typically done using tape (electrical, maybe even a small piece of grip
tape). There are not hard rules on choosing surfaces and increasing friction so experiment. You may have to
adjust the program controlling to the Toddler to take into account the surface. For example, you cannot
assume that two pivot actions will turn the Toddler 90 degrees.

This brings up the issue of accuracy. The Toddler does a good job of moving but it is relatively inaccurate in its
movements compared to its wheeled cousin, the Boe-Bot. If the Toddler goes six steps forward and six steps
back it will not wind up in exactly the same spot. It may be close but it is unlikely to be exact. Add some turns
and all bets are off. Getting the Toddler to walk in a square is next to impossible. It is easy to program the
commands to walk in a square but due to friction and the mechanical accuracy of the Toddler’s movements,
the Toddler will probably not walk over its own footsteps.

Experiment #2: Taking your First Steps

Advanced Robotics with the Toddler 1.0 • Page Page 2525

For most experiments, accuracy is not an issue. It is possible to track the Toddler’s orientation using the
optional Compass AppMod but tracking distance moved is a daunting task at best. These problems are beyond
the scope of this book but great areas for investigation. Answering the question “where is my robot?” is one
of the most challenging hobby and educational endeavors, whether it uses wheels or legs.

The lack of articulated legs prevents the Toddler from walking over obstacles. The Toddler cannot handle a
grade of any significance so stay away from ramps. The Toddler can avoid obstacles by going around them. In
later experiments, we examine obstacle detection using infrared devices included with the Toddler.

Experiment #2: Taking your First Steps

Page Page 2626 • Advanced Robotics with the Toddler 1.0

Activity #1: Basic Walking Movements: Approach 1

The Toddler is a walking robot so getting it moving is a good starting point. Figure 2.2 shows a possible order
of operation for taking a few steps.

Figure 2.2: First Steps

Movement 0:
Starting Position

Movement 1:
Lean Right from Start

Movement 2:
Lean Right; Left Forward

Movement 3:
Lean Left, Right Back

Movement 4:
Lean Left, Right Forward

Movement 5:
Lean Right, Left Back

Movement 6:
Lean Right, Right Forward

Once the Toddler has walked Movements 0, 1 and 2 the process of Movements 3, 4, 5 and 6 can repeat to walk
in a straight line. The code to perform the first three movements is shown in the next three pages. Movement
1 and 2 are almost identical except that one adjusts the tilt and the other the stride. Movements 1, 3 and 5
would use the same code with different values. The same is true for movements 2, 4 and 6.

Experiment #2: Taking your First Steps

Advanced Robotics with the Toddler 1.0 • Page Page 2727

The M0 routine is unique. It is designed to place the feet of the Toddler on the ground and next to each other
regardless of where feet are when the routine starts. This can result in a jerking motion if the legs are not
already in or close to this point.

The M1 and M2 routines are representative examples of all the other movement routines in the program. The
M1 movement tilts the Toddler to the right. To do so, it sends pulses to both servos. It sends the same pulse
width to the stride motor so it remains stationary and the feet do not move forward or backwards. The tilt
servo is sent pulses that progressively change in width causing the tilt servo to rotate which in turn causes the
Toddler to lean.

The M2 routine does the same thing but in this case the tilt servo is held stationary while the stride servo is
driven by a set of different width pulses causing one leg to move ahead of the other.

The program uses constant named definitions for the range of servo pulse width limit values while the
examples with small snippets of code use numeric constant values. The effect is the same but the named
constants minimize changes to the program when experimenting with different values.

Experiment #2: Taking your First Steps

Page Page 2828 • Advanced Robotics with the Toddler 1.0

Figure 2.3: Movement 0 Example (M0)

Starting Position

Ending Position

+ 5 VDC

 0 VDC

TiltServo

 M0:
 FOR Pulses = 1 TO 100 STEP 5
 PULSOUT TiltServo, 750
 PULSOUT StrideServo, 750
 PAUSE 25
 NEXT

25 ms

1500 us1500 us

25 ms

last pulsefirst pulse

Movement 0 BASIC Stamp Code

1500 us

25 ms

1500 us 1500 us

+ 5 VDC

 0 VDC

StrideServo

25 ms

1500 us1500 us

25 ms
last pulsefirst pulse

1500 us

25 ms

1500 us 1500 us

Movement 0 Timing Diagram

Experiment #2: Taking your First Steps

Advanced Robotics with the Toddler 1.0 • Page Page 2929

Figure 2.4: Movement 1 Example (M1)

Starting Position

Ending Position

+ 5 VDC

 0 VDC

TiltServo

 M1:
 FOR Pulses = 750 TO 620 STEP 5
 PULSOUT TiltServo, Pulses
 PULSOUT StrideServo, 750
 PAUSE 25
 NEXT

25 ms

1490 us1500 us

25 ms
last pulsefirst pulse

Movement 1 BASIC Stamp Code

1480 us

25 ms

1250 us 1240 us

+ 5 VDC

 0 VDC

StrideServo

25 ms

1500 us1500 us

25 ms

last pulsefirst pulse

1500 us

25 ms

1500 us 1500 us

Movement 1 Timing Diagram

Experiment #2: Taking your First Steps

Page Page 3030 • Advanced Robotics with the Toddler 1.0

Figure 2.5: Movement 2 Example (M2)

Starting Position

Ending Position

+ 5 VDC

 0 VDC

TiltServo

 M2:
 FOR Pulses = 750 TO 850 STEP 5
 PULSOUT TiltServo, 620
 PULSOUT StrideServo, Pulses
 PAUSE 25
 NEXT

25 ms

1240 us1240 us

25 ms
last pulsefirst pulse

Movement 2 BASIC Stamp Code

1240 us

25 ms

1240 us 1240 us

+ 5 VDC

 0 VDC

StrideServo

25 ms

1510 us1500 us

25 ms

last pulsefirst pulse

1520 us

25 ms

1690 us 1700 us

Movement 2 Timing Diagram

Experiment #2: Taking your First Steps

Advanced Robotics with the Toddler 1.0 • Page Page 3131

An example program that performs all the movements for walking forward is shown is shown below. It is
possible to adjust the different constants in the program to make the robot walk faster or take bigger steps.
Be careful of large changes because the Toddler can fall over. More on that later.

This program also cleans up its movement so both feet are centered and flat on the floor when it is done. This
makes starting other programs easier since the feet are in a known position.

' -----[Title]--
' Toddler Program 2.1: First Steps Forward
' {$STAMP BS2}

' -----[I/O Definitions]--

TiltServo CON 13 ' Tilt servo on P12
StrideServo CON 12 ' Stride servo on P13

' -----[Constants]--

MoveDelay CON 25 ' in micrcoseconds

TiltStep CON 5 ' TiltServo step size

RightTilt CON 620 ' Tilt limits
CenterTilt CON 750
LeftTilt CON 880

StrideStep CON 5 ' StrideServo step size

RightForward CON 650 ' Stride limits
StrideCenter CON 750
LeftForward CON 850

' -----[Variables]--

MoveLoop VAR Nib ' Loop for repeat movements
Pulses VAR Word ' Pulse variable

' -----[Main Code]--
'
' Take three full steps.

Main_Program:
 GOSUB M0 ' center servos
 GOSUB M1 ' tilt right
 GOSUB M2 ' step left

Experiment #2: Taking your First Steps

Page Page 3232 • Advanced Robotics with the Toddler 1.0

 FOR MoveLoop = 1 to 3
 GOSUB M3 ' tilt left
 GOSUB M4 ' step right
 GOSUB M5 ' tilt right
 GOSUB M6 ' step left
 NEXT

 GOSUB M3 ' tilt left
 GOSUB M7 ' center feet
 GOSUB M8 ' center servos
END

' -----[Subroutines]--

M0:
 FOR Pulses = 1 TO 100 STEP StrideStep
 PULSOUT TiltServo, CenterTilt
 PULSOUT StrideServo, StrideCenter
 PAUSE MoveDelay
 NEXT
 RETURN

M1:
 FOR Pulses = CenterTilt TO RightTilt STEP TiltStep
 PULSOUT TiltServo, Pulses
 PULSOUT StrideServo, StrideCenter
 PAUSE MoveDelay
 NEXT
 RETURN

M2:
 FOR Pulses = StrideCenter TO LeftForward STEP StrideStep
 PULSOUT TiltServo, RightTilt
 PULSOUT StrideServo, Pulses
 PAUSE MoveDelay
 NEXT
 RETURN

M3:
 FOR Pulses = RightTilt TO LeftTilt STEP TiltStep
 PULSOUT TiltServo,Pulses
 PULSOUT StrideServo, LeftForward
 PAUSE MoveDelay
 NEXT
 RETURN

M4:
 FOR Pulses = LeftForward TO RightForward STEP StrideStep
 PULSOUT TiltServo,LeftTilt
 PULSOUT StrideServo, Pulses
 PAUSE MoveDelay

Experiment #2: Taking your First Steps

Advanced Robotics with the Toddler 1.0 • Page Page 3333

 NEXT
 RETURN

M5:
 FOR Pulses = LeftTilt TO RightTilt STEP TiltStep
 PULSOUT TiltServo,Pulses
 PULSOUT StrideServo, RightForward
 PAUSE MoveDelay
 NEXT
 RETURN

M6:
 FOR Pulses = RightForward TO LeftForward STEP StrideStep
 PULSOUT TiltServo,RightTilt
 PULSOUT StrideServo, Pulses
 PAUSE MoveDelay
 NEXT
 RETURN

M7:
 FOR Pulses = LeftForward TO StrideCenter STEP StrideStep
 PULSOUT TiltServo,LeftTilt
 PULSOUT StrideServo, Pulses
 PAUSE MoveDelay
 NEXT
 RETURN

M8:
 FOR Pulses = LeftTilt TO CenterTilt STEP TiltStep
 PULSOUT TiltServo,Pulses
 PULSOUT StrideServo, StrideCenter
 PAUSE MoveDelay
 NEXT
RETURN

Note that the program is downloaded to the Toddler using the serial cable with the power switch in either the
download (1) or run (2) position. The cable can remain connected to the Toddler while it is walking if there is
sufficient length to allow it to move freely about the PC. You may want to hold the cable near the Toddler as it
does make it slight less stable. The power on the Toddler should be turned off when disconnecting the cable.
The Toddler can then walk on its own when the power is turned on since the program is downloaded into
non-volatile memory. You can also program Toddler with the switch in Position 1, hold the reset button and
move it to Position 2 so it will walk.

Three constants could be modified to make it walk quicker: MoveDelay and TiltStep and StrideStep.
Decreasing MoveDelay means there will be less pause between the servo pulses. Increasing TiltStep and
StrideStep means the servo pulse width changes will be larger (making for fewer pulses to complete the
step).

Experiment #2: Taking your First Steps

Page Page 3434 • Advanced Robotics with the Toddler 1.0

If the Toddler isn’t starting with both feet firmly planted squarely on the ground, or if you would like to
experiment with larger step distances you could modify the CenterTilt and StrideCenter values. This
would result in a need to also modify the right and left limits for both the tilt and stride.

These parameters are from the following code snippet in Toddler Program 2.1.

RightTilt CON 620 ' Tilt limits
CenterTilt CON 750
LeftTilt CON 880

StrideStep CON 5 ' StrideServo step size

RightForward CON 650 ' Stride limits
StrideCenter CON 750
LeftForward CON 850

Experiment #2: Taking your First Steps

Advanced Robotics with the Toddler 1.0 • Page Page 3535

Activity #2: Walking Backwards: Approach 1

The Toddler robot can walk backward as well as forward but it is not simply a matter of using the steps in the
prior program in reverse order. The Toddler moves in the reverse fashion but the functions necessary to do
this will be different. With just over half a dozen routines, the last sample program is relatively simple.
Changing it to handling a different direction is not too difficult. Keep in mind that the two other approaches
to performing these tasks are presented later in this chapter.

In the prior program, the subroutine for each step was numbered sequentially. In this program, the steps will
be slightly different so we can use different routine names. The starting movement is the same as the prior
program but the second step will be Movement 9 that matches the M9 routine.

Figure 2.6: First Steps – In Reverse

Movement 0:
Starting Position

Movement 1:
Lean Right from Start

Movement 9:
Lean Right; Left Back

Movement 10:

Lean Left, Left Back

Movement 11:
Lean Left, Right Back

Movement 12:
Lean Right, Right Back

Movement 13:
Lean Left, Right Forward

Experiment #2: Taking your First Steps

Page Page 3636 • Advanced Robotics with the Toddler 1.0

As with the forward walking program, the Toddler starts with Movements 0, 1 and 9. The process of
Movements 10, 11, 12 and 13 can repeat to walk in a straight line but backwards. An example program is
shown is shown below. Adjust the different constants in the program to make your robot walk faster or take
bigger steps. The program also cleans up its movement so both feet are centered and flat on the floor.

Note that the routines with the same name have been extracted from the first sample program. A program
that used this approach but required more sophisticated actions would need more routines with the potential
of requiring all 36.

' -----[Title]--
' Toddler Program 2.2: First Steps Backward
' {$STAMP BS2}

' -----[I/O Definitions]--

TiltServo CON 13 ' Tilt servo on P12
StrideServo CON 12 ' Stride servo on P13

' -----[Constants]--

MoveDelay CON 25 ' in micrcoseconds

TiltStep CON 5 ' TiltServo step size

RightTilt CON 620 ' Tilt limits
CenterTilt CON 750
LeftTilt CON 880

StrideStep CON 5 ' StrideServo step size

RightForward CON 650 ' Stride limits
StrideCenter CON 750
LeftForward CON 850

' -----[Variables]--

MoveLoop VAR Nib ' Loop for repeat movements
Pulses VAR Word ' Pulse variable

' -----[Main Code]--
'
' Take three full steps.

Experiment #2: Taking your First Steps

Advanced Robotics with the Toddler 1.0 • Page Page 3737

Main_Program:
 GOSUB M0 ' center servos
 GOSUB M1 ' tilt right
 GOSUB M9 ' step right

 FOR MoveLoop = 1 to 3
 GOSUB M10 ' tilt left
 GOSUB M11 ' step left
 GOSUB M12 ' tilt right
 GOSUB M13 ' step right
 NEXT

 GOSUB M10 ' tilt left
 GOSUB M14 ' center feet
 GOSUB M8 ' center servos
END

' -----[Subroutines]--

M0:
 FOR Pulses = 1 TO 100 STEP StrideStep
 PULSOUT TiltServo, CenterTilt
 PULSOUT StrideServo, StrideCenter
 PAUSE MoveDelay
 NEXT
 RETURN

M1:
 FOR Pulses = CenterTilt TO RightTilt STEP TiltStep
 PULSOUT TiltServo, Pulses
 PULSOUT StrideServo, StrideCenter
 PAUSE MoveDelay
 NEXT
 RETURN

M8:
 FOR Pulses = LeftTilt TO CenterTilt STEP TiltStep
 PULSOUT TiltServo,Pulses
 PULSOUT StrideServo, StrideCenter
 PAUSE MoveDelay
 NEXT
 RETURN

M9:
 FOR Pulses = StrideCenter TO RightForward STEP StrideStep
 PULSOUT TiltServo, RightTilt
 PULSOUT StrideServo, Pulses
 PAUSE MoveDelay
 NEXT
 RETURN

Experiment #2: Taking your First Steps

Page Page 3838 • Advanced Robotics with the Toddler 1.0

M10:
 FOR Pulses = RightTilt TO LeftTilt STEP TiltStep
 PULSOUT TiltServo,Pulses
 PULSOUT StrideServo, RightForward
 PAUSE MoveDelay
 NEXT
 RETURN

M11:
 FOR Pulses = RightForward TO LeftForward STEP StrideStep
 PULSOUT TiltServo,LeftTilt
 PULSOUT StrideServo, Pulses
 PAUSE MoveDelay
 NEXT
 RETURN

M12:
 FOR Pulses = LeftTilt TO RightTilt STEP TiltStep
 PULSOUT TiltServo,Pulses
 PULSOUT StrideServo, LeftForward
 PAUSE MoveDelay
 NEXT
 RETURN

M13:
 FOR Pulses = LeftForward TO RightForward STEP StrideStep
 PULSOUT TiltServo,RightTilt
 PULSOUT StrideServo, Pulses
 PAUSE MoveDelay
 NEXT
 RETURN

M14:
 FOR Pulses = RightForward TO StrideCenter STEP StrideStep
 PULSOUT TiltServo,LeftTilt
 PULSOUT StrideServo, Pulses
 PAUSE MoveDelay
 NEXT
 RETURN

Experiment #2: Taking your First Steps

Advanced Robotics with the Toddler 1.0 • Page Page 3939

Activity #3: Using a DATA Table to Store Movements: Approach 2

The length of the two prior programs is similar but more complex programs could grow larger simply because
more movement routines would be necessary. Moving information in tables is one way of simplifying the
programming task. This next sample application employs both fixed size and variable length tables.

The fixed size table is used to store the information about each movement. The variable length tables are used
to store a sequence of movements. This allows complex movements to be of arbitrary length. The tables are
accessed using the PBASIC READ command. See the BASIC Stamp Manual for this command’s syntax.

The fixed size table contains four byte entries.3 The first byte is the starting tilt value and the second byte is
the ending tilt value. The third and fourth bytes are the starting and ending stride values. The READ command
can only access byte values (i.e., one “letter” at a time) but the servo pulse width values are greater than 255
(we’re using values between 600 and 900), the limit of an unsigned byte. This is why the values are divided by
10 before storing them in the table and when they must be multiplied by 10 before they are used. This
approach is more complex to execute but it cuts the table size in half. Named constants simplify the table
construction.

The Movement routine assumes that each entry is used to tilt or move the Toddler. It checks the first two
bytes to see if they are the same and handles the entry accordingly.

Only eight (8) movements are employed in this program but it is easy to see how all 36 movements could be
easily added to the table.

The fixed table is actually a two dimensional entity. The first dimension is the four bytes for each entry. The
second is each movement entry. The indexing for this second dimension is handled using a LOOKUP statement.
Since the table entries are a fixed size, it is possible to index the array numerically using a statement like:

READ M1 + ((Dx – 1) * 4) , T1

Using the LOOKUP statement does provide some flexibility if the order of the array indexing is changed in the
future or if the size of the entry changes.

The variable length tables store the sequence of movement numbers for a particular action. The index of one
of these tables is passed to the single movement routine. It is possible to repeat a sequence of actions using
one of these tables but a FOR. . . NEXT loop is used for controlling each step since the loop limit value is
easy to change. This keeps the program from increasing in size as functional requirements change.

3 If you are interested in learning about the difference between bits, nibbles, bytes and words see the Basic Analog and Digital text.

Experiment #2: Taking your First Steps

Page Page 4040 • Advanced Robotics with the Toddler 1.0

' -----[Title]--
' Toddler Program 2.3: First Steps Forward Using Tables
' {$STAMP BS2}

' -----[I/O Definitions]--

TiltServo CON 13 ' Tilt servo on P12
StrideServo CON 12 ' Stride servo on P13

' -----[Constants]--

MoveDelay CON 25 ' in micrcoseconds

TiltStep CON 10 ' TiltServo step size

RightTilt CON 620 ' Tilt limits
CenterTilt CON 750
LeftTilt CON 880

StrideStep CON 10 ' StrideServo step size

RightForward CON 650 ' Stride limits
StrideCenter CON 750
LeftForward CON 850

' -----[Variables]--

MoveLoop VAR Nib ' Loop for repeat movements
Pulses VAR Word ' Pulse variable

Dx VAR Pulses
Mx VAR Word
T1 VAR Byte
T2 VAR Byte
S1 VAR Byte
S2 VAR Byte

' -----[Main Code]--
'
' Take three full steps.
'
' The following state tables are lists of movement state numbers.
' A zero indicates the end of a list.
' These are used with the Movement routine.

StartForward DATA 1, 2, 0
WalkForward DATA 3, 4, 5, 6, 0
FinishForward DATA 3, 7, 8, 0

Experiment #2: Taking your First Steps

Advanced Robotics with the Toddler 1.0 • Page Page 4141

Main_Program:
 GOSUB M0 ' center servos

 Mx = StartForward
 GOSUB Movement

 FOR MoveLoop = 1 to 3
 Mx = WalkForward
 GOSUB Movement
 NEXT

 Mx = FinishForward
 GOSUB Movement ' tilt left
END

' -----[Subroutines]--
'
' ----- Constants and tables for Movement routine -----
'
' Note: DATA is stored as bytes so the value must be less than 256.
' Dividing values by 10 keeps the values within this range.

CT CON CenterTilt/10
RT CON RightTilt/10
LT CON LeftTilt/10

SC CON StrideCenter/10
LF CON LeftForward/10
RF CON RightForward/10

M1 DATA CT, RT, SC, SC
M2 DATA RT, RT, SC, LF
M3 DATA RT, LT, LF, LF
M4 DATA LT, LT, LF, RF
M5 DATA LT, RT, RF, RF
M6 DATA RT, RT, RF, LF
M7 DATA LT, LT, LF, SC
M8 DATA LT, CT, SC, SC

' ----- Movement: Move feet using DATA table referenced by Mx -----
'
' Input: Mx = table index, table ends in 0

Movement:
 READ Mx, Dx ' read state table number
 Mx = Mx + 1

Experiment #2: Taking your First Steps

Page Page 4242 • Advanced Robotics with the Toddler 1.0

 IF Dx = 0 THEN DoReturn ' skip if no more states

 LOOKUP Dx,[M1, M1, M2, M3, M4, M5, M6, M7, M8],Dx

 READ Dx, T1 ' read table entry
 READ Dx+1, T2
 READ Dx+2, S1
 READ Dx+3, S2

 IF T1 = T2 THEN MovementStride

 FOR Pulses = T1*10 TO T2*10 STEP TiltStep
 PULSOUT TiltServo, Pulses
 PULSOUT StrideServo, S1*10
 PAUSE MoveDelay
 NEXT
 GOTO Movement

MovementStride:
 FOR Pulses = S1*10 TO S2*10 STEP StrideStep
 PULSOUT TiltServo, T1*10
 PULSOUT StrideServo, Pulses
 PAUSE MoveDelay
 NEXT
 GOTO Movement

' ----- M0: Move feet to initial center position -----

M0:
 FOR Pulses = 1 TO 100 STEP StrideStep
 PULSOUT TiltServo, CenterTilt
 PULSOUT StrideServo, StrideCenter
 PAUSE MoveDelay
 NEXT

DoReturn:
 RETURN

Adding support for walking backward is easier with this program. Three things need to be changed. First, the
extra movement entries must be added to the fixed size table and the LOOKUP command. Second, a variable
length table must be added for stepping through a backward foot-step. Finally, the table name and a call to
the movement routine must be added. This is significantly better than adding more routines to the program.

Experiment #2: Taking your First Steps

Advanced Robotics with the Toddler 1.0 • Page Page 4343

Activity #4: Using State Transitions For Movements: Approach 3

Now we take a look at a completely different way of handling movement control. The prior two approaches
essentially required the programming to string together a series of subroutine calls in the proper order. In
those cases, the programmer knew what the prior state was and would only use movement routines that
were relevant. It was relatively simple for the basic actions examined thus far but it gets very tedious as the
actions become more complex.

The state transition approach presented here changes the kinds of routines used from ones that have a
known starting and ending state to routines that indicate a desired ending state. The program keeps track of
the current state and adjusts accordingly. The reason that this approach simplifies things is that there are
really only two kinds of actions, tilt and stride, that the Toddler can perform and only three logical
orientations with each of these for a total of nine states. The following diagram shows these states.

Figure 2.7: State Transition Approach

LR

L

R

RR

R

L

CC

R L

CL

R

L

CR

R

L

RC

R L

LL

L

R

RL

R

L

LC

LR

Tilt Tilt

Tilt Tilt Tilt

Tilt Tilt Tilt

Pivot

Pivot Pivot

StrideStride

StrideStride

Stride

Stride

Tilt

Experiment #2: Taking your First Steps

Page Page 4444 • Advanced Robotics with the Toddler 1.0

Each circle represents a state. The center shows the orientation of the Toddler’s legs and body. The arrow
indicates the front of the Toddler. The dark background in a rectangle indicates that a leg is on the floor. The
white background indicates the leg is in the air. The two letters at the top of the circle provide a
representation for the Toddler positioning. The first letter indicates the tilt (T) and the second indicates stride
(S) or what foot is in front. The letters can be L, C, or R. C indicates the respect servo motor is centered. For
the tilt, C indicates both feet are on the ground. For stride, C indicates that both feet are inline along the
center of the body’s axis. The reason for naming each state will become apparent soon.

There are also bi-directional arrows showing valid transitions from one state to another. The label on the line
indicates the type of change that occurs. The Pivot designation is the same as Stride but we make the
distinction because this will cause the Toddler to pivot.

Nine states, each with four possible transitions yields 36 distinct transitions. If the transition routines are
labeled using their starting and ending state names with the format TSxTS then movement M0 is CCxRC as it
starts with both legs together in state CC and ends up leaning to the right in state RC. Using this naming
convention makes programming easier in the prior examples with the code looking like this.

' -----[Main Code]--
'
' Take three full steps.

Main_Program:
 GOSUB M0 ' center servos

 GOSUB CCxRC ' tilt right
 GOSUB RCxRL ' step left

 FOR MoveLoop = 1 to 3
 GOSUB RLxLL ' tilt left
 GOSUB LRxLR ' step right
 GOSUB LRxRR ' tilt right
 GOSUB RRxRL ' step left
 NEXT

 GOSUB RLxLL ' tilt left
 GOSUB LLxLC ' center feet
 GOSUB LCxCC ' center servos
END

The advantage of the name change is obvious. The last two letters of the prior routine are the starting two
letters of the next routine.

Of course, this is still relatively cryptic and without the comments the actions would definitely be confusing.
The problem is that this approach requires knowledge of the prior state.

Experiment #2: Taking your First Steps

Advanced Robotics with the Toddler 1.0 • Page Page 4545

Now take a look at the next sample code snippet. It does away with the comments (not always a good idea but
fine for this discussion) and the routines being called indicate what action is being performed.

' -----[Main Code]--
'
' Take three full steps.

Main_Program:
 GOSUB M0 ' center servos

 GOSUB TiltRight
 GOSUB StideLeft

 FOR MoveLoop = 1 to 3
 GOSUB TiltLeft
 GOSUB StrideRight
 GOSUB TiltRight
 GOSUB StrideLeft
 NEXT

 GOSUB TiltLeft
 GOSUB StrideCenter
 GOSUB TiltCenter
END

So what happened? You need to take a look at the next program listing to see how these routines were
implemented but essentially two variables, CurrentTilt and CurrentStride, were added to keep track of
where the feet are. The routine simply applies the designated change.

There are only six routines that need be used. Any can be applied in any order although only four will cause a
change at any time.

Why? Because two of the six will cause the Toddler to stay in the state that it is currently in. For example, if
the Toddler is tilting to the left then calling the TiltLeft routine will leave it in the same position. There will
be a delay while it executes the routine but it turns out to be a very short period of time. It is not noticeable
when watching the Toddler move.

The following program implements the routines used in the prior code snippet but it retains some of the ideas
employed in the last full program listing (Program 2.3) that used tables. They are still worthwhile although they
are used in a slight different fashion here.

Experiment #2: Taking your First Steps

Page Page 4646 • Advanced Robotics with the Toddler 1.0

' -----[Title]--
' Toddler Program 2.4: First Steps Forward
' {$STAMP BS2}

' -----[I/O Definitions]--

TiltServo CON 13 ' Tilt servo on P12
StrideServo CON 12 ' Stride servo on P13

' -----[Constants]--

MoveDelay CON 25 ' in micrcoseconds

TiltStep CON 10 ' TiltServo step size

RightTilt CON 620 ' Tilt limits
CenterTilt CON 750
LeftTilt CON 880

StrideStep CON 10 ' StrideServo step size

RightStride CON 650 ' Stride limits
CenterStride CON 750
LeftStride CON 850

' -----[Variables]--

MoveLoop VAR Nib ' Loop for repeat movements
Pulses VAR Word ' Pulse variable

CurrentTilt VAR Word
CurrentStride VAR Word
NewValue VAR Word

Dx VAR Pulses
Mx VAR Word

' -----[Main Code]--
'
' Take three full steps.
'
' The following state tables are lists of movement state numbers.
' A xx indicates the end of a list.
' These are used with the Movement routine.

TL CON 0

Experiment #2: Taking your First Steps

Advanced Robotics with the Toddler 1.0 • Page Page 4747

TC CON 1
TR CON 2

SL CON 3
SC CON 4
SR CON 5

xx CON 255

WalkForward DATA TR, SL, TL, SR, xx
WalkBackward DATA TR, SR, TL, SL, xx
TurnLeft DATA TL, SR, TC, SL, xx
FinishForward DATA TR, SC, TC, xx

Main_Program:
 GOSUB ResetCC

 FOR MoveLoop = 1 to 3
 Mx = WalkForward
 GOSUB Movement
 NEXT

 FOR MoveLoop = 1 to 3
 Mx = TurnLeft
 GOSUB Movement
 NEXT

 FOR MoveLoop = 1 to 3
 Mx = WalkBackward
 GOSUB Movement
 NEXT

 Mx = FinishForward
 GOSUB Movement
END

' -----[Subroutines]--

' ----- Movement: Move feet using DATA table referenced by Mx -----
'
' Input: Mx = table index, table ends in xx

Movement:
 READ Mx, Dx ' read next action
 Mx = Mx + 1

 IF Dx = xx THEN MovementDone ' skip if end of list

 GOSUB DoMovement ' execute movement
 GOTO Movement ' loop until done

Experiment #2: Taking your First Steps

Page Page 4848 • Advanced Robotics with the Toddler 1.0

DoMovement:
 BRANCH Dx,[TiltLeft,TiltCenter,TiltRight,StrideLeft,StrideCenter,StrideRight]
 ' will fall through if invalid index
MovementDone:
 RETURN

' ---- Movement routines can be called directly ----

TiltLeft:
 NewValue = LeftTilt
 GOTO MovementTilt

TiltCenter:
 NewValue = CenterTilt
 GOTO MovementTilt

TiltRight:
 NewValue = RightTilt

MovementTilt:
 FOR Pulses = CurrentTilt TO NewValue STEP TiltStep
 PULSOUT TiltServo, Pulses
 PULSOUT StrideServo, CurrentStride
 PAUSE MoveDelay
 NEXT

 CurrentTilt = NewValue
 RETURN

StrideLeft:
 NewValue = LeftStride
 GOTO MovementStride

StrideCenter:
 NewValue = CenterStride
 GOTO MovementStride

StrideRight:
 NewValue = RightStride

MovementStride:
 FOR Pulses = CurrentStride TO NewValue STEP StrideStep
 PULSOUT TiltServo, CurrentTilt
 PULSOUT StrideServo, Pulses
 PAUSE MoveDelay
 NEXT

 CurrentStride = NewValue
 RETURN

Experiment #2: Taking your First Steps

Advanced Robotics with the Toddler 1.0 • Page Page 4949

' ----- Move feet to initial center position -----

ResetCC:
 CurrentTilt = CenterTilt
 CurrentStride = CenterStride

 FOR Pulses = 1 TO 100 STEP StrideStep
 PULSOUT TiltServo, CenterTilt
 PULSOUT StrideServo, CenterStride
 PAUSE MoveDelay
 NEXT

DoReturn:
 RETURN

Ok, we cheated. There is a little turning done in the program and that will be covered in more detail in the
next experiment. The reason for including it here is that the pivot action is not explicitly done by a routine.
Instead the general movement routine handles all actions. The pivot action is defined within the TurnLeft
table.

The variable table handling is also changed to allow access to the six action functions like TiltLeft. Each is
implemented as a routine that exits via a RETURN instruction. This is why the DoMovement routine is called via
GOSUB rather than putting the BRANCH statement within a loop.

Also note the refinement with the LOOKUP statement. The named constant xx is used to terminate a variable
length table. The value 255 is out of range for the values used and it allows the first value to be 0.

This approach will be the one used in subsequent programs in the book. Extending tables like WalkForward
should be significantly easier since there are only six valid values. It is also possible to conserve space by using
only 4 bits to store each value but this makes table definition and extraction very difficult due to limitations of
PBASIC. Still, it is an option should a program become code-space constrained.

Experiment #2: Taking your First Steps

Page Page 5050 • Advanced Robotics with the Toddler 1.0

1. Increase the walking speed and determine the maximum speed before the Toddler falls over.

2. Determine whether the Toddler operates the same on different surfaces such as carpet, wood and tile.

3. The Toddler can start moving its left or right foot first. Try changing the programs so that it moves the

opposite foot first.

4. Have the Toddler perform a little dance using a more complex series of steps such as moving the foot in
the air forward and backward a few times.

Challenges

Experiment #3: Turning Around

Advanced Robotics with the Toddler 1.0 • Page Page 5151

The Toddler is a bit stiff. It can only move its feet forward and
backward but it cannot turn its feet relative to it’s body. This
doesn’t stop it from being able to turn. While walking in a
straight line for the Toddler is somewhat similar to a person,
turning is very different. The closest thing to turning like the
Toddler for a person is trying to turn on ice with flat shoes.

The process of turning right on ice is relatively simple. Put your left foot forward and place it on the ground.
Pull the left foot towards you. Pull it back and you pivot to the right. If the ice is wet and slippery then it may
take quick a number of attempts to turn 90 degrees. Put the right foot forward to turn left.

The standard Toddler does not do well on ice but it uses the same principle on other surfaces. The Toddler’s
feet are smooth metal that provides the slick surface. Turning works best when the surface the Toddler sits
on provides some friction. If the surface is too slippery then it is possible to modify the Toddler’s feet to
provide more friction. This is typically done using a tape that has a rougher surface than the Toddler’s metal
feet. The entire foot need not be covered. There only needs to be enough coverage to add friction for the
turn. The tape should not have an affect on straight-line movement.

Activity #1: Making a Turn

The Toddler turns by placing both feet flat on the ground and sliding them in opposite directions. Moving the
feet in opposite directions is somewhat counterproductive because some of the forces are in opposite
directions. The actual movement is more of a pivot than a turn.

The Toddler pivots only a small fraction of a circle at a time. It may take five to ten movements to turn 90
degrees (unless you put a small piece of grip tape on the feet). Twice that to turn around. The basic turning
process is four movements like those shown below in Figure 3.1. A left turn works the same way except the tilt
and leg movements are reversed.

Experiment #3:
Turning Around

Experiment #3: Turning Around

Page Page 5252 • Advanced Robotics with the Toddler 1.0

Figure 3.1: Walking in a Circle (Right Hand Turns)

Movement 1

Movement 2

Movement 3:

Movement 4:

The first three movements place the left foot in front while the pivoting action occurs in the last movement.
The following program performs this process multiple times. It performs both a right and a left turn. The key
additions to Program 2.4 is the TurnRight table entry. The next section addresses two other entries that are
presented in this program. These are WideTurnLeft and PivotRight.

' -----[Title]--
' Toddler Program 3.1: Turning
' {$STAMP BS2}

' -----[I/O Definitions]--

TiltServo CON 13 ' Tilt servo on P12
StrideServo CON 12 ' Stride servo on P13

' -----[Constants]--

MoveDelay CON 25 ' in micrcoseconds

TiltStep CON 10 ' TiltServo step size

RightTilt CON 620 ' Tilt limits
CenterTilt CON 750
LeftTilt CON 880

StrideStep CON 10 ' StrideServo step size

RightStride CON 650 ' Stride limits

Experiment #3: Turning Around

Advanced Robotics with the Toddler 1.0 • Page Page 5353

CenterStride CON 750
LeftStride CON 850

' -----[Variables]--

MoveLoop VAR Nib ' Loop for repeat movements
Pulses VAR Word ' Pulse variable

CurrentTilt VAR Word
CurrentStride VAR Word
NewValue VAR Word

Dx VAR Pulses
Mx VAR Word

' -----[Main Code]--
'
' The following state tables are lists of movement state numbers.
' A xx indicates the end of a list.
' These are used with the Movement routine.

TL CON 0
TC CON 1
TR CON 2

SL CON 3
SC CON 4
SR CON 5

xx CON 255

WalkForward DATA TR, SL, TL, SR, xx
WalkBackward DATA TR, SR, TL, SL, xx

TurnLeft DATA TL, SR, TC, SL, xx
WideTurnLeft DATA TL, SR, TC, SL, TR, SL, TL, SR, xx

TurnRight DATA TR, SL, TC, SR, xx
PivotRight DATA TR, SL, TC, SR, TL, SL, TC, SR, xx

FinishForward DATA TR, SC, TC, xx

Main_Program:
 GOSUB ResetCC

 FOR MoveLoop = 1 to 5
 Mx = TurnRight
 GOSUB Movement
 NEXT

Experiment #3: Turning Around

Page Page 5454 • Advanced Robotics with the Toddler 1.0

 FOR MoveLoop = 1 to 5
 Mx = TurnLeft
 GOSUB Movement
 NEXT

 FOR MoveLoop = 1 to 5
 Mx = PivotRight
 GOSUB Movement
 NEXT

 FOR MoveLoop = 1 to 5
 Mx = WideTurnLeft
 GOSUB Movement
 NEXT

 Mx = FinishForward
 GOSUB Movement
END

' -----[Subroutines]--

' ----- Movement: Move feet using DATA table referenced by Mx -----
'
' Input: Mx = table index, table ends in xx

Movement:
 READ Mx, Dx ' read next action
 Mx = Mx + 1

 IF Dx = xx THEN MovementDone ' skip if end of list

 GOSUB DoMovement ' execute movement
 GOTO Movement ' loop until done

DoMovement:
 BRANCH Dx,[TiltLeft,TiltCenter,TiltRight,StrideLeft,StrideCenter,StrideRight]
 ' will fall through if invalid index
MovementDone:
 RETURN

' ---- Movement routines can be called directly ----

TiltLeft:
 NewValue = LeftTilt
 GOTO MovementTilt

TiltCenter:
 NewValue = CenterTilt
 GOTO MovementTilt

Experiment #3: Turning Around

Advanced Robotics with the Toddler 1.0 • Page Page 5555

TiltRight:
 NewValue = RightTilt

MovementTilt:
 FOR Pulses = CurrentTilt TO NewValue STEP TiltStep
 PULSOUT TiltServo, Pulses
 PULSOUT StrideServo, CurrentStride
 PAUSE MoveDelay
 NEXT

 CurrentTilt = NewValue
 RETURN

StrideLeft:
 NewValue = LeftStride
 GOTO MovementStride

StrideCenter:
 NewValue = CenterStride
 GOTO MovementStride

StrideRight:
 NewValue = RightStride

MovementStride:
 FOR Pulses = CurrentStride TO NewValue STEP StrideStep
 PULSOUT TiltServo, CurrentTilt
 PULSOUT StrideServo, Pulses
 PAUSE MoveDelay
 NEXT

 CurrentStride = NewValue
 RETURN

' ----- Move feet to initial center position -----

ResetCC:
 CurrentTilt = CenterTilt
 CurrentStride = CenterStride

 FOR Pulses = 1 TO 100 STEP StrideStep
 PULSOUT TiltServo, CenterTilt
 PULSOUT StrideServo, CenterStride
 PAUSE MoveDelay
 NEXT

DoReturn:
 RETURN

Experiment #3: Turning Around

Page Page 5656 • Advanced Robotics with the Toddler 1.0

Activity #2: Different Turns

The basic turns will get the Toddler where it wants to go but there are many variations on this theme. For
example, turning in place can be useful in tight places. The PivotRight table entry shows how this can be
done. In this case pivoting is accomplished by performing one turning movement by moving the leg forward.
This is immediately followed with the same type of movement but it starts by stepping backward first. The
combination results in two turn actions and a new orientation while leaving the Toddler in approximately the
same position.

The other table entry included in the program is WideTurnLeft. This takes the Toddler around a circle with a
wider radius. The trick is adding a forward step after each turning action. A close look at the Toddler’s path
will show that the movement is not really an arc but rather the perimeter of a polygon with rounded corners.
Still, this is close enough to an arc that most people will think the Toddler is going around a circle.

Hopefully the simplicity of the state transition approach is apparent with Program 3.1. It is identical to
Program 2.4 except for the additional tables and calls that utilize these tables.

Experiment #3: Turning Around

Advanced Robotics with the Toddler 1.0 • Page Page 5757

1. Only a few turning variations were presented in the sample programs. Add the table entries needed to

perform the actions not included.

2. The Toddler is symmetrical in construction and movement. It can make a turn going forwards or
backwards. Create a program that can perform the actions presented but going backwards instead.

3. Full leg movements were used in the sample applications. Determine what happens if the movements are
shorter. For example, instead of moving from state CR to CL, try moving from CR to CC.

4. WideTurnLeft turns the Toddler to the left but the turn radius is wider than TurnLeft. Make the Toddler’s
turn even wider. Hint: there are two ways of doing this. One is related to forward movement. The other is
related to turn movement.

Challenges

Experiment #3: Turning Around

Page Page 5858 • Advanced Robotics with the Toddler 1.0

Experiment #4: Coordinated Walking

Advanced Robotics with the Toddler 1.0 • Page Page 5959

Walking and turning are useful operations but they don’t get
the Toddler very far. It is possible to string together a number
of actions using multiple GOSUB statements but this can get
tedious. It is also less efficient than the approach presented in
this experiment.

The program in Experiment #3 used tables to store a series of basic movements. More complex actions can be
done using very long tables but an alternative is to utilize these tables from a higher-level table. Instead of
indicating whether the Toddler leans left or right, a movement table will include actions such as turn right,
walk backward 10 steps, pivot left and walk forward 10 steps.

The second activity in this experiment uses this approach to move the Toddler in more complex paths than
the earlier experiments but first we take a look at how to determine if a table is part of one set or another.
This will allow the Movement routine to determine whether a table is a basic set of movement commands or if
the table contains more complex commands. The Movement routine can then process the commands
accordingly.

Activity #1: Which Table?

There are advantages to using high-level actions with the Toddler such as making a left turn versus low-level
actions such as leaning left and moving the left foot forward. Both are needed and prior examples have
shown how low level actions can be combined in tables to provide a higher level of abstraction. Taking this
approach to the next level requires a different set of tables whose elements reference the lower level tables.

Using two types of tables is possible using two different routines but there is an advantage to using a single
routine for both. This allows a program to freely mix the use of these two types of tables in the program. The
program in this activity shows how this can be done. The approach is then used in the next activity’s program.

This program does not make the Toddler walk but it does use the BASIC Stamp to run the program. It uses the
BASIC Stamp editor’s DEBUG window to display the output generated by DEBUG statements in the program.
Most programmers familiar with the BASIC Stamp will already know about the DEBUG statement but check
out the BASIC Stamp Manual if you are not. Also, the serial cable will remain connected to the Toddler for this
experiment.

Experiment #4:
Coordinated
Walking

Experiment #4: Coordinated Walking

Page Page 6060 • Advanced Robotics with the Toddler 1.0

This program assumes that two kinds of tables will be used with the program and that each type of table will
be in its own area of the program memory. There is no restriction that tables be adjacent, only that they be
above or below the boundary that is designated by the BasicMovements label.

Table 4.1: Coordinated Walking Table Structure

 Advanced

Movement
Tables

 Advanced tables are located
before the BasicMovement

label.

BasicMovement: Basic
Movement

Tables

 Advanced tables are located
after the BasicMovement

label.

 Main program

The following program uses a Movement routine that has the index of the table in the Mx variable. It uses the
DEBUG statement to output a string in the debug window on the PC that indicates whether index is for an
advanced or basic movement. In the next activity, the Movement routine will be replaced by one that actually
interprets the tables to make the Toddler move.

' -----[Title]--
' Toddler Program 4.1: Which Table
' {$STAMP BS2}

' -----[Constants]--

' -----[Variables]--

Mx VAR Word

' -----[Movement Support Codes]--
'
' The following state tables are lists of movement state numbers.
' A xx indicates the end of a list.
' These are used with the Movement routine.

TL CON 0
TC CON 1
TR CON 2

Experiment #4: Coordinated Walking

Advanced Robotics with the Toddler 1.0 • Page Page 6161

SL CON 3
SC CON 4
SR CON 5

xx CON 255

' -----[Movement Value Tables]--
'
' These can be used with the Movement routine.
' The tables can contain Basic Movement Codes.
'
' Note: ALL movement tables must be in this section

LeftSemicircle DATA 7, bLeftTurn, bLeftTurn, bForward, xx
RightSemicircle DATA 7, bRightTurn, bRightTurn, bForward, xx

WalkForward3 DATA 3, bForward, xx
WalkForward8 DATA 8, bForward, xx

' -----[Basic Movement Codes]--
'
' Used in Movement tables.
' Referenced below using LOOKUP statement.

bFinish CON 0
bForward CON 1
bBackward CON 2
bLeftTurn CON 3
bRightTurn CON 4
bPivotLeft CON 5
bPivotRight CON 6

' -----[Basic Movement Tables]--
'
' These tables can contain Movement Support Codes.

BasicMovements CON Forward

Forward DATA 1, TR, SL, TL, SR, xx
Backward DATA 1, TR, SL, TL, SR, xx

LeftTurn DATA 1, TL, SR, TC, SL, TL, SR, TR, SL, xx
RightTurn DATA 1, TR, SL, TC, SR, TR, SL, TL, SR, xx

PivotLeft DATA 3, TL, SR, TC, SL, TR, SR, TC, SL, xx
PivotRight DATA 3, TR, SL, TC, SR, TL, SL, TC, SR, xx

Finish DATA 1, TR, SC, TC, xx

Experiment #4: Coordinated Walking

Page Page 6262 • Advanced Robotics with the Toddler 1.0

' -----[Main Code]--

Main_Program:
 Mx = LeftSemicircle
 GOSUB Movement

 Mx = WalkForward3
 GOSUB Movement

 Mx = PivotRight
 GOSUB Movement

 Mx = WalkForward8
 GOSUB Movement

 Mx = Finish
 GOSUB Movement
END

' -----[Subroutines]--

Movement:
 IF Mx < BasicMovements THEN BasicMovementTable

 debug hex Mx, " is an advanced movement table",cr
 RETURN

BasicMovementTable:
 debug hex Mx, " is a basic movement table",cr
 RETURN

This approach to memory partitioning takes into account that PBASIC allocates space for DATA statements in
the order that they appear in the program. Not all programming languages do this so the technique should
only be applied when the appropriate support is available. It is handy in this instance because other
approaches to differentiating data are more cumbersome. This approach can be prone to programmer errors
if the tables are not grouped properly but keeping the tables relatively close to each other in the program
text makes it easy to spot such problems.

Activity #2: Figure 8s and Square Dancing

Now we take a look at making the Toddler execute more complex movements using the dual table types
presented in Activity #1. One set of tables handles low-level actions such as tilting and leg movements. The
second set of tables handles higher-level actions such as turning a corner and walking in a large circle.

Experiment #4: Coordinated Walking

Advanced Robotics with the Toddler 1.0 • Page Page 6363

In this Activity, the program makes the Toddler walk in a Figure 8 and a large square. The use of a high-level
action table allows easy creation of more complex movement sequences. In this case, the use of higher level
sequences like LeftSemicircle cause the Toddler to execute a large number of basic foot movements.

The program implements a more sophisticated version of the Movement routine than found in prior Activities.
In this case, the Mx variable can contain an index for either a basic or an advanced table. The Movement
routine will execute the appropriate table. The decoding process is a bit complex so we have included DEBUG
statements to help present the execution process. The DEBUG statements are actually comments in the listing
but they can be changed by doing a “Replace All” in the editor from “ ’debug” to “debug”. The converse will
change the lines back to comments.

The DEBUG statements are only useful when the Toddler is connected to the PC since the display of
information is done on the PC. While it is possible to keep the Toddler connected to the PC while it is walking,
these more advanced movement sequences move the Toddler in large areas. A laptop or a long serial cable
may be necessary to handle these larger movement areas.

What we have found useful is to instead use the DEBUG version while running the Toddler with the power
switch in the download mode. In this case, the Toddler’s servos do not move but the program continues to
execute. The DEBUG statements show what the Toddler would be doing if the power switch was in the RUN
mode (Position 2).

When running in the download mode, the Toddler will continue to send pulses to the servos even though the
servos receive no power and hence do not rotate. The delay does slow down debug presentation though. It is
possible to add a RETURN statement immediately after the DoMovement label to eliminate this thereby
making the debug process go faster. Just make sure to comment out or remove the RETURN statement or the
Toddle will not move.

Now for the code.

' -----[Title]--
' Toddler Program 4.2: Advanced Walking
' {$STAMP BS2}

' -----[I/O Definitions]--

TiltServo CON 13 ' Tilt servo on P12
StrideServo CON 12 ' Stride servo on P13

' -----[Constants]--

MoveDelay CON 25 ' in micrcoseconds

Experiment #4: Coordinated Walking

Page Page 6464 • Advanced Robotics with the Toddler 1.0

TiltStep CON 10 ' TiltServo step size

RightTilt CON 620 ' Tilt limits
CenterTilt CON 750
LeftTilt CON 880

StrideStep CON 10 ' StrideServo step size

RightStride CON 650 ' Stride limits
CenterStride CON 750
LeftStride CON 850

' -----[Variables]--

FigureLoop VAR Nib
MoveLoop VAR Byte ' Loop for repeat movements
MoveLoopLimit VAR Byte

SubMoveLoop VAR Byte ' Loop for repeat submovements
SubMoveLoopLimit VAR Byte

Pulses VAR Word ' Pulse variable

CurrentTilt VAR Word
CurrentStride VAR Word
NewValue VAR Word

Dx VAR Pulses

Mx VAR Word
MxCurrent VAR Word

Sx VAR Word
SxCurrent VAR Word

' -----[Movement Support Codes]--
'
' The following state tables are lists of movement state numbers.
' A xx indicates the end of a list.
' These are used with the Movement routine.

TL CON 0
TC CON 1
TR CON 2

SL CON 3
SC CON 4
SR CON 5

Experiment #4: Coordinated Walking

Advanced Robotics with the Toddler 1.0 • Page Page 6565

xx CON 255

' -----[Movement Value Tables]--
'
' These can be used with the Movement routine.
' The tables can contain Basic Movement Codes.
'
' Note: ALL movement tables must be in this section

LeftSemicircle DATA 7, bLeftTurn, bLeftTurn, bForward, xx
RightSemicircle DATA 7, bRightTurn, bRightTurn, bForward, xx

WalkForward3 DATA 3, bForward, xx
WalkForward8 DATA 8, bForward, xx

' -----[Basic Movement Codes]--
'
' Used in Movement tables.
' Referenced below using LOOKUP statement.

bFinish CON 0
bForward CON 1
bBackward CON 2
bLeftTurn CON 3
bRightTurn CON 4
bPivotLeft CON 5
bPivotRight CON 6

' -----[Basic Movement Tables]--
'
' These tables can contain Movement Support Codes.

BasicMovements CON Forward

Forward DATA 1, TR, SL, TL, SR, xx
Backward DATA 1, TR, SL, TL, SR, xx

LeftTurn DATA 1, TL, SR, TC, SL, TL, SR, TR, SL, xx
RightTurn DATA 1, TR, SL, TC, SR, TR, SL, TL, SR, xx

PivotLeft DATA 3, TL, SR, TC, SL, TR, SR, TC, SL, xx
PivotRight DATA 3, TR, SL, TC, SR, TL, SL, TC, SR, xx

Finish DATA 1, TR, SC, TC, xx

' -----[Main Code]--

Main_Program:
 GOSUB ResetCC

Experiment #4: Coordinated Walking

Page Page 6666 • Advanced Robotics with the Toddler 1.0

 ' Make a Figure 8

 FOR FigureLoop = 1 to 5
 Mx = LeftSemicircle
 GOSUB Movement

 Mx = WalkForward3
 GOSUB Movement

 Mx = RightSemicircle
 GOSUB Movement

 Mx = WalkForward3
 GOSUB Movement
 NEXT

 ' Make a big polygon

 FOR FigureLoop = 1 to 5
 Mx = PivotRight
 GOSUB Movement

 Mx = WalkForward8
 GOSUB Movement
 NEXT

 Mx = Finish
 GOSUB Movement
END

' -----[Subroutines]--

' ----- Movement: Move feet using DATA table referenced by Mx -----
'
' Input: Mx = movement table index, table ends in xx
' or
' Mx = submovement table index, table ends in xx
'
' Note: All submovment tables come after the movment tables in this file.

Movement:
 IF Mx < BasicMovements THEN SetupMovement

 MxCurrent = Mx ' setup to use submovement table
 MoveLoopLimit = 1
 GOTO StartMovement

SetupMovement:
 READ Mx, MoveLoopLimit ' read movement table repeat count
 MxCurrent = Mx + 1

Experiment #4: Coordinated Walking

Advanced Robotics with the Toddler 1.0 • Page Page 6767

StartMovement:
 FOR MoveLoop = 1 to MoveLoopLimit
 Mx = MxCurrent ' Mx = start of movement table

 'debug hex Mx, " Movement ", dec MoveLoop, " of ", dec MoveLoopLimit,cr

 IF Mx < BasicMovements THEN MovementLoop
 ' skip if movement table
 SxCurrent = Mx ' SxCurrent = submovement table index
 GOTO StartSubMovement ' enter middle of loop

MovementLoop:
 READ Mx, SxCurrent ' read next submovment byte
 Mx = Mx + 1
 IF SxCurrent = xx THEN MovementDone
 ' skip if end of list
 'debug " ", dec SxCurrent, " movement",cr
 LOOKUP
SxCurrent,[Finish,Forward,Backward,LeftTurn,RightTurn,PivotLeft,PivotRight],SxCurrent
 ' lookup submovement table index
StartSubMovement: ' start executing submovement table
 READ SxCurrent, SubMoveLoopLimit
 ' read submovement table repeat count
 SxCurrent = SxCurrent + 1

 FOR SubMoveLoop = 1 to SubMoveLoopLimit
 Sx = SxCurrent

 'debug " ", hex Sx, " submovement ", dec SubMoveLoop, " of ", dec SubMoveLoopLimit,cr

SubMovementLoop:
 READ Sx, Dx ' read next submovent action
 Sx = Sx + 1

 IF Dx = xx THEN SubMovementDone
 ' skip if end of list
 GOSUB DoMovement ' execute movement
 GOTO SubMovementLoop

SubMovementDone:
 NEXT
 GOTO MovementLoop

MovementDone:
 NEXT
 RETURN

DoMovement:
 'debug " ", dec Dx, " action",cr
 BRANCH Dx,[TiltLeft,TiltCenter,TiltRight,StrideLeft,StrideCenter,StrideRight]
 ' will fall through if invalid index
 RETURN

Experiment #4: Coordinated Walking

Page Page 6868 • Advanced Robotics with the Toddler 1.0

' ---- Movement routines can be called directly ----

TiltLeft:
 NewValue = LeftTilt
 GOTO MovementTilt

TiltCenter:
 NewValue = CenterTilt
 GOTO MovementTilt

TiltRight:
 NewValue = RightTilt

MovementTilt:
 FOR Pulses = CurrentTilt TO NewValue STEP TiltStep
 PULSOUT TiltServo, Pulses
 PULSOUT StrideServo, CurrentStride
 PAUSE MoveDelay
 NEXT

 CurrentTilt = NewValue
 RETURN

StrideLeft:
 NewValue = LeftStride
 GOTO MovementStride

StrideCenter:
 NewValue = CenterStride
 GOTO MovementStride

StrideRight:
 NewValue = RightStride

MovementStride:
 FOR Pulses = CurrentStride TO NewValue STEP StrideStep
 PULSOUT TiltServo, CurrentTilt
 PULSOUT StrideServo, Pulses
 PAUSE MoveDelay
 NEXT

 CurrentStride = NewValue
 RETURN

' ----- Move feet to initial center position -----

ResetCC:
 CurrentTilt = CenterTilt
 CurrentStride = CenterStride

Experiment #4: Coordinated Walking

Advanced Robotics with the Toddler 1.0 • Page Page 6969

 FOR Pulses = 1 TO 100 STEP StrideStep
 PULSOUT TiltServo, CenterTilt
 PULSOUT StrideServo, CenterStride
 PAUSE MoveDelay
 NEXT

DoReturn:
 RETURN

The Main_Program now executes so the Toddler performs two large movements: a figure 8 and a square. The
Movement routine is called to execute high-level tables that include commands such as left turn. The
bLeftTurn value is used in the table because the DATA statements only store bytes. These values are used
with a LOOKUP statement in the Movement routine to select the appropriate low level table to use for basic
movements. One high-level table entry causes the Toddler to execute many low level movements.

The Movement routine still handles low-level tables using the technique outlined in Activity #1. For example,
the Finish table uses only a few basic movements. If the Movement routine did not handle both types of
tables then either a low level routine would have to be called or a high level table would have to be created.

Experiment #4: Coordinated Walking

Page Page 7070 • Advanced Robotics with the Toddler 1.0

1. A challenge in the Experiment #5 asked to extend the movement routine so it could handle repetitions of

subsections in a table as in.

SpecialMovement DATA 4, TL, SR, TC, SL, xy
 DATA 2. TR, SL, TL, SR, xy
 DATA 2. TL, SR, TC, SL, xx

 Provide this same type of facility for both types of movement tables.

2. Implement the prior challenge. Then reduce the multiple calls to Movement shown below

 Mx = LeftSemicircle
 GOSUB Movement

 Mx = WalkForward3
 GOSUB Movement

 Mx = RightSemicircle
 GOSUB Movement

 Mx = WalkForward3
 GOSUB Movement

to the following

 Mx = Figure8
 GOSUB Movement

 Hint: The Figure 8 table will be a combination of the four tables listed above.

3. Generate a set of symmetrical useful high level and low level movement tables. High level movements

might include TurnAroundLeft, TurnAroundRight, WalkForward1Foot, and WalkBackward1Foot. Low level
movements might include ReversePivotRight and ReversePivotLeft.

Challenges

Experiment #5: Following Light

Advanced Robotics with the Toddler 1.0 • Page Page 7171

The photoresistors in your kit can be used to make your Toddler
detect variations in light level. With some programming, your
Toddler can be transformed into a photophile (a creature
attracted to light), or a photophobe (a creature that tries to
avoid light).

To sense the presence and intensity of light you’ll build a couple of photoresistor circuits on your Toddler. A
photoresistor is a light-dependent resistor (LDR) that covers the spectral sensitivity similar to that of the
human eye. The active elements of these photoresistors are made of Cadmium Sulfide (CdS). Light enters into
the semiconductor layer applied to a ceramic substrate and produces free charge carriers. A defined
electrical resistance is produced that is inversely proportional to the illumination intensity. In other words,
darkness produces high resistance, and high illumination produces very small amounts of resistance.

The specific photoresistors included in the Toddler kit are from EG&G Vactec (#VT935G). If you need
additional photoresistors they are available from Parallax’s Component Shop as well as from many electronic
component suppliers. See Appendix A: Toddler Parts Lists and Sources. The specifications of these
photoresistors are shown in Figure 5.1:

Figure 5.1: EG&G Vactec Photoresistor Specifications

Luminance is a scientific name for the measurement of incident light. The unit of measurement of luminance is
commonly the "foot-candle" in the English system and the "lux" in the metric system. While using the
photoresistors we won't be concerned about lux levels, just whether or not luminance is higher or lower in
certain directions. The Toddler can be programmed to use the relative light intensity information to make
navigation decisions. For more information about light measurement with a microcontroller, take a look at
Earth Measurements Experiment #4, Light on Earth and Data Logging.

Experiment #5:
Following Light

Experiment #5: Following Light

Page Page 7272 • Advanced Robotics with the Toddler 1.0

Activity #1: Building and Testing Photosensitive Eyes

Figure 5.2 shows the capacitors and photoresistor used in this experiment along with their schematic
symbols. Both capacitors are nonpolar, meaning that terminals 1 and 2 as shown may be swapped without
affecting the circuit. In addition to the capacitors, you’ll also need two (2) 220 ohm resistors (color code red,
red, brown).

(2) Photoresistors
(2) 0.1 µF capacitors
(2) 0.01 µF capacitors
(2) 220 ohm resistors (not pictured)
 (misc.) jumper wires

Figure 5.2: Photoresistor and capacitor circuit symbols and parts.

1

2

1

2

1
2

.1 µF

2

1

1
2

.01 µF

2

1

Figure 5.3 shows the resistor/capacitor (RC) circuit for each photoresistor. A photoresistor is an analog
device. Its value varies continuously as luminance, another analog value, varies. The photoresistor’s resistance
is very low when it’s light-sensitive surface is placed in direct sunlight. As the light level decreases, the
photoresistor’s resistance increases. In complete darkness, the photoresistor’s value can increase to more
than 1 M Ohm. Even through the photoresistor is analog, its response to light is nonlinear. This means if the
input source (luminance) varies at a constant rate, the photoresistor’s value does not necessarily vary at a
constant rate.

Experiment #5: Following Light

Advanced Robotics with the Toddler 1.0 • Page Page 7373

Figure 5.3: Photoresistor Schematic and Pictorial

Gnd
Red
P13
Gnd
Red
P12

X4X3

Vdd VssVin

P15
P14
P13
P12
P11
P10
P9

P5
P4
P3
P2
P1
P0

X2

Reset

 www.parallaxinc.com

Gnd
P3
P2
Gnd
P1
P0

+ 6Vdc -

©2002
X5

+ - P11-P10
LEFT IR SET

X6

-P15 + - P14
RIGHT IR SET

Rev A

Power

A
S

ervos
B

 A
ux2 A

ux1
—

—

X1

” ”Toddler

Experiment #5: Following Light

Page Page 7474 • Advanced Robotics with the Toddler 1.0

Programming to Measure the Resistance

The circuit in Figure 5.3 was designed for use with the PBASIC RCTIME command. This command can be used
with an RC circuit where one value, either R or C, varies while the other remains constant. The RCTIME
command lends itself to measuring the variable values because it takes advantage of a time varying property
of RC circuits.

For one of the RC circuits shown in Figure 5.3, the first step in setting up the RCTIME measurement is
charging the lower plate of the capacitor to 5 V. Setting the I/O pin connected to the lower capacitor plate by
the 220 Ohm resistor high for a few ms takes care of this. Next, the RCTIME command can be used to take
the measurement of the time it takes the lower plate to discharge from 5 to 1.4 V. Why 1.4 V? Because that’s
the BASIC Stamp I/O pin’s threshold voltage. When the voltage at an I/O pin set to input is above 1.4 V, the
value in the input register bit connected to that I/O pin is “1.” When the voltage is below 1.4 V, the value in the
input register bit is “0.”

In this circuit RCTIME measures the time it takes the voltage at the lower plate of the capacitor in one of the
Figure 5.3 RC circuits to drop from 5 to 1.4 V. This discharge is directly proportional to the photoresistor’s
resistance. Since this resistance varies with luminance (exposure to varying levels of light), so does the time.
By measuring this time, relative light exposure can be inferred. See the BASIC Stamp Manual for a detailed
discussion of RCTIME.

The RCTIME command changes the I/O pin from output to input. As soon as the I/O pin becomes an input, the
voltage at the lower plate of the capacitor starts to fall according to the time equation just discussed. The
BASIC Stamp starts counting in 2 us increments until the voltage at the capacitor’s lower plate drops below
1.4 V.

ü
TIP

For Best Results: Eliminate direct sunlight; it’s too bright for the photoresistor circuits.
They perform best in lower light levels while seeking indirect natural light.

Run Program Listing 5.1. It demonstrates how to use the RCTIME command to read the photoresistors. This
program makes use of the Debug Terminal, so leave the serial cable connected to the Toddler board while
Program is running.

Experiment #5: Following Light

Advanced Robotics with the Toddler 1.0 • Page Page 7575

' Toddler Program 5.1: Photoresistor RCTime Display
' {$Stamp bs2} ' Stamp Directive.

'----- Declarations --------------

 left_photo var word ' For storing measured RC times of
 right_photo var word ' the left & right photoresistors.

 left_pin con 10
 right_pin con 15

'----- Initialization ------------

 debug cls ' Open and clear a Debug Terminal.

'----- Main Routine --------------

main:

 ' Measure RC time for left photoresistor.

 high left_pin ' Set detector to output-high.
 pause 3 ' Pause for 3 ms.
 rctime left_pin,1,left_photo ' Measure RC time on left detector.

 ' Measure RC time for right photoresistor.

 high right_pin ' Set detector to output-high.
 pause 3 ' Pause for 3 ms.
 rctime right_pin,1,right_photo ' Measure RC time on right detector.

 ' Display RC time measurements using Debug Terminal.

 debug home, "L ", dec5 left_photo, " R ", dec5 right_photo

goto main

How The Photoresistor Display Works

Two word variables, left_photo and right_photo are declared for storing the RC time values of the left
and right photoresistors. The main routine then measures and displays the RC times for each RC circuit. The
code for reading the right RC circuit is shown below. First, the I/O pin left_pin is set to output-high. Next,
a 3 ms pause allows enough time for the capacitor to charge. After 3 ms, the lower plate of the capacitor is
close enough to 5 V and is ready for the rctime measurement. The rctime command measures the RC time
on I/O pin right_pin, with a beginning state of “1” (5 V), and stores the result in the right_photo variable.

Experiment #5: Following Light

Page Page 7676 • Advanced Robotics with the Toddler 1.0

Remember, the value stored in right_photo is a number. This number tells how many 2 us increments
passed before the voltage at the lower plate of the capacitor passed below the I/O pin’s 1.4 V threshold.

 high right_pin
 pause 3
 rctime right_pin,1,right_photo

Try replacing one of the 0.01 µF capacitors with a 0.1 µF capacitor. Which circuit fares better in bright light,
the one with the larger (0.1 µF) or the one with the smaller (0.01 µF) capacitor? What is the effect as the
surroundings get darker and darker? Do you notice any symptoms that would indicate that one or the other
capacitor would work better in a darker environment?

Make sure to restore your circuit to its original state before moving on to the next activity.

Experiment #5: Following Light

Advanced Robotics with the Toddler 1.0 • Page Page 7777

Activity #2: A Light Compass

If you focus a flashlight beam in front of the Toddler, the circuit and programming techniques just discussed
can be used to make the Toddler turn so that it’s pointing at the flashlight beam. Make sure the
photoresistors are pointed so that they can make a light comparison. Aside from each being pointed 45°
outward from the center-line of the Toddler, they also should be oriented so they are pointing 45° downward
from horizontal. In other words, point the faces of the photoresistors down toward the table top. Then, use
a bright flashlight to make the Toddler track the direction of the light.

Programming the Toddler to Point at the Light

Getting the Toddler to track a light source is a matter of programming it to compare the value measured at
each photoresistor. Remember that as the light gets dimmer, the photoresistor’s value increases. So, if the
photoresistor value on the right is larger than that of the photoresistor on the left, it means it’s brighter on
the left. Given this situation, the Toddler should turn left. On the other hand, if the RCTIME of the
photoresistor on the left is larger than that of the photoresistor on the right, the right side is brighter and the
Toddler should turn right.

To keep the Toddler from changing directions too often, a parameter for deadband is introduced. Deadband
is a range of values wherein the system makes no attempt at correction. If the numbers go above or below
the deadband, then the system corrects accordingly. The most convenient way to measure for deadband is to
subtract the left RCTime from the right rctime, or visa versa, then take the absolute value. If this absolute
value is within the deadband limits, then do nothing; if otherwise, program an appropriate adjustment.

q Enter and run Program Listing 5.2.

q Shine a bright flashlight in front of the Toddler. When you move the flashlight, the Toddler should rotate

so that it’s pointing at the flashlight beam.

q Instead of using a flashlight, use your hand to cast a shadow over one of the photoresistors. The Toddler

should rotate away from the shadow.

' Toddler Program 5.2: Light Compass
' {$Stamp bs2} ' Stamp Directive.

' -----[I/O Definitions]--

TiltServo CON 13 ' Tilt servo on P12
StrideServo CON 12 ' Stride servo on P13

' -----[Constants]--

Experiment #5: Following Light

Page Page 7878 • Advanced Robotics with the Toddler 1.0

MoveDelay CON 15 ' in micrcoseconds

TiltStep CON 5 ' TiltServo step size

RightTilt CON 620 ' Tilt limits
CenterTilt CON 750
LeftTilt CON 880

StrideStep CON 5 ' StrideServo step size

RightStride CON 650 ' Stride limits
CenterStride CON 750
LeftStride CON 850

' -----[Variables]--

FigureLoop VAR Nib
MoveLoop VAR Byte ' Loop for repeat movements
MoveLoopLimit VAR Byte

SubMoveLoop VAR Byte ' Loop for repeat submovements
SubMoveLoopLimit VAR Byte

Pulses VAR Word ' Pulse variable

CurrentTilt VAR Word
CurrentStride VAR Word
NewValue VAR Word

Dx VAR Pulses

Mx VAR Word
MxCurrent VAR Word

Sx VAR Word
SxCurrent VAR Word

' -----[Movement Support Codes]--
'
' The following state tables are lists of movement state numbers.
' A xx indicates the end of a list.
' These are used with the Movement routine.

TL CON 0
TC CON 1
TR CON 2

SL CON 3
SC CON 4

Experiment #5: Following Light

Advanced Robotics with the Toddler 1.0 • Page Page 7979

SR CON 5

xx CON 255

' -----[Movement Value Tables]--
'
' These can be used with the Movement routine.
' The tables can contain Basic Movement Codes.
'
' Note: ALL movement tables must be in this section

LeftSemicircle DATA 7, bLeftTurn, bLeftTurn, bForward, xx
RightSemicircle DATA 7, bRightTurn, bRightTurn, bForward, xx

WalkForward3 DATA 3, bForward, xx
WalkForward8 DATA 8, bForward, xx

' -----[Basic Movement Codes]--
'
' Used in Movement tables.
' Referenced below using LOOKUP statement.

bFinish CON 0
bForward CON 1
bBackward CON 2
bLeftTurn CON 3
bRightTurn CON 4
bPivotLeft CON 5
bPivotRight CON 6

' -----[Basic Movement Tables]--
'
' These tables can contain Movement Support Codes.

BasicMovements CON Forward

Forward DATA 1, TR, SL, TL, SR, xx
Backward DATA 1, TR, SR, TL, SL, xx

LeftTurn DATA 1, TL, SR, TC, SL, xx
RightTurn DATA 1, TR, SL, TC, SR, xx

PivotLeft DATA 3, TL, SR, TC, SL, xx
PivotRight DATA 3, TR, SL, TC, SR, xx

Finish DATA 1, TR, SC, TC, xx

'----- Photodetector Declarations --------------

Experiment #5: Following Light

Page Page 8080 • Advanced Robotics with the Toddler 1.0

 left_photo var word ' For storing measured RC times of
 right_photo var word ' the left & right photoresistors.

 left_pin con 10
 right_pin con 15

'----- Initialization ------------

 output 2 ' Set P2 to output.
 freqout 2, 2000, 3000 ' Declare a variable for counting.

 GOSUB ResetCC ' Initialize feet

'----- Main Routine --------------

main:

 ' Measure RC time for left photoresistor.

 high left_pin ' Set detector to output-high.
 pause 3 ' Pause for 3 ms.
 rctime left_pin,1,left_photo ' Measure RC time on left detector.

 ' Measure RC time for right photoresistor.

 high right_pin ' Set detector to output-high.
 pause 3 ' Pause for 3 ms.
 rctime right_pin,1,right_photo ' Measure RC time on right detector.

 ' Take the difference between right_photo and left_photo, then decide what to do.
 DEBUG home, "Left = ", dec left_photo, " Right = ",dec right_photo,cr

 if abs(left_photo-right_photo) < 4 then main
 if left_photo > right_photo then turn_right
 if left_photo < right_photo then turn_left

'----- Navigation Routines -------

Turn_left: ' turn left towards light
 Mx = PivotLeft
 GOSUB Movement
 goto main ' go back to main routine.

Turn_right: ' turn right towards light
 Mx = PivotRight
 GOSUB Movement
 goto main ' go back to main routine.

' -----[Subroutines]--

' ----- Movement: Move feet using DATA table referenced by Mx -----

Experiment #5: Following Light

Advanced Robotics with the Toddler 1.0 • Page Page 8181

'
' Input: Mx = movement table index, table ends in xx
' or
' Mx = submovement table index, table ends in xx
'
' Note: All submovment tables come after the movment tables in this file.

Movement:
 IF Mx < BasicMovements THEN SetupMovement

 MxCurrent = Mx ' setup to use submovement table
 MoveLoopLimit = 1
 GOTO StartMovement

SetupMovement:
 READ Mx, MoveLoopLimit ' read movement table repeat count
 MxCurrent = Mx + 1

StartMovement:
 FOR MoveLoop = 1 to MoveLoopLimit
 Mx = MxCurrent ' Mx = start of movement table

 'debug hex Mx, " Movement ", dec MoveLoop, " of ", dec MoveLoopLimit,cr

 IF Mx < BasicMovements THEN MovementLoop
 ' skip if movement table
 SxCurrent = Mx ' SxCurrent = submovement table index
 GOTO StartSubMovement ' enter middle of loop

MovementLoop:
 READ Mx, SxCurrent ' read next submovment byte
 Mx = Mx + 1
 IF SxCurrent = xx THEN MovementDone
 ' skip if end of list
 'debug " ", dec SxCurrent, " movement",cr
 LOOKUP
SxCurrent,[Finish,Forward,Backward,LeftTurn,RightTurn,PivotLeft,PivotRight],SxCurrent
 ' lookup submovement table index
StartSubMovement: ' start executing submovement table
 READ SxCurrent, SubMoveLoopLimit
 ' read submovement table repeat count
 SxCurrent = SxCurrent + 1

 FOR SubMoveLoop = 1 to SubMoveLoopLimit
 Sx = SxCurrent

 'debug " ", hex Sx, " submovement ", dec SubMoveLoop, " of ", dec SubMoveLoopLimit,cr

SubMovementLoop:
 READ Sx, Dx ' read next submovent action
 Sx = Sx + 1

 IF Dx = xx THEN SubMovementDone

Experiment #5: Following Light

Page Page 8282 • Advanced Robotics with the Toddler 1.0

 ' skip if end of list
 GOSUB DoMovement ' execute movement
 GOTO SubMovementLoop

SubMovementDone:
 NEXT
 IF Mx < BasicMovements THEN MovementLoop

MovementDone:
 NEXT
 RETURN

DoMovement:
 'debug " ", dec Dx, " action",cr
 BRANCH Dx,[TiltLeft,TiltCenter,TiltRight,StrideLeft,StrideCenter,StrideRight]
 ' will fall through if invalid index
 RETURN

' ---- Movement routines can be called directly ----

TiltLeft:
 NewValue = LeftTilt
 GOTO MovementTilt

TiltCenter:
 NewValue = CenterTilt
 GOTO MovementTilt

TiltRight:
 NewValue = RightTilt

MovementTilt:
 FOR Pulses = CurrentTilt TO NewValue STEP TiltStep
 PULSOUT TiltServo, Pulses
 PULSOUT StrideServo, CurrentStride
 PAUSE MoveDelay
 NEXT

 CurrentTilt = NewValue
 RETURN

StrideLeft:
 NewValue = LeftStride
 GOTO MovementStride

StrideCenter:
 NewValue = CenterStride
 GOTO MovementStride

StrideRight:
 NewValue = RightStride

Experiment #5: Following Light

Advanced Robotics with the Toddler 1.0 • Page Page 8383

MovementStride:
 FOR Pulses = CurrentStride TO NewValue STEP StrideStep
 PULSOUT TiltServo, CurrentTilt
 PULSOUT StrideServo, Pulses
 PAUSE MoveDelay
 NEXT

 CurrentStride = NewValue
 RETURN

' ----- Move feet to initial center position -----

ResetCC:
 CurrentTilt = CenterTilt
 CurrentStride = CenterStride

 FOR Pulses = 1 TO 100 STEP StrideStep
 PULSOUT TiltServo, CenterTilt
 PULSOUT StrideServo, CenterStride
 PAUSE MoveDelay
 NEXT

DoReturn:
 RETURN

How the Light Compass Works

Program 5.2 takes RC time measurements and first checks to see if the difference between the values
returned by the rctime commands fall in the deadband using the command:

if abs(left_photo - right_photo) < 2 then main

If the difference between RC times is within the deadband, the program jumps to the Main: label. If the
measured difference in RC times is not within the deadband, two IF...THEN statements decide which
routine to call, turn_left or turn_right.

 if left_photo > right_photo then turn_right
 if left_photo < right_photo then turn_left

These routines use the movement routines initially presented in the prior chapter. The Toddler can make
smaller turns.

Experiment #5: Following Light

Page Page 8484 • Advanced Robotics with the Toddler 1.0

Your Turn

In a darker area, not only will the photoresistor values be larger, so will the difference between them. You
may have to increase the deadband in low ambient light to detune the Toddler to small and changing
variations in light. The lower the light levels, the less you need the PAUSE statements. If the Toddler’s
performance starts to decrease, it’s probably because the time between pulses has exceeded 40 ms. The first
line of defense for this problem is to reduce the PAUSE Period in each subroutine to zero. The second line
of defense is to check photoresistors during alternate pulses. That way, after the first pulse, the right
photoresistor could be checked. Then, after the second pulse, the left photoresistor could be checked. You
can try your hand at developing code that does this in the Challenges section.

The deadband value is currently set to “2” in the expression:

 if abs(left_photo-right_photo) < 2 then main

q Experiment with different ambient light levels and their effect on deadband by trying this experiment in
lighter and darker areas. In lighter areas, the deadband value can be made smaller, even zero. In darker
areas, the deadband value should be increased.

q Swap the conditions in the second and third if...then statement in Program 5.2. Then re-run the

program. Now your Toddler points away from the light.

Activity #3: Following The Light

Programming the Toddler to follow light requires that only a few modifications to Program Listing 5.2 be
made. The main change is that measurements within the deadband resulted in no motion in Program Listing
5.2. In Program Listing 5.3, when the difference between RC times falls within the deadband, it results in
forward motion. Let’s see how it works.

' Toddler Program 5.3: Follow The Light
' {$Stamp bs2} ' Stamp Directive.

' -----[I/O Definitions]--

TiltServo CON 13 ' Tilt servo on P12
StrideServo CON 12 ' Stride servo on P13

' -----[Constants]--

MoveDelay CON 25 ' in micrcoseconds

TiltStep CON 10 ' TiltServo step size

Experiment #5: Following Light

Advanced Robotics with the Toddler 1.0 • Page Page 8585

RightTilt CON 620 ' Tilt limits
CenterTilt CON 750
LeftTilt CON 880

StrideStep CON 10 ' StrideServo step size

RightStride CON 650 ' Stride limits
CenterStride CON 750
LeftStride CON 850

' -----[Variables]--

FigureLoop VAR Nib
MoveLoop VAR Byte ' Loop for repeat movements
MoveLoopLimit VAR Byte

SubMoveLoop VAR Byte ' Loop for repeat submovements
SubMoveLoopLimit VAR Byte

Pulses VAR Word ' Pulse variable

CurrentTilt VAR Word
CurrentStride VAR Word
NewValue VAR Word

Dx VAR Pulses

Mx VAR Word
MxCurrent VAR Word

Sx VAR Word
SxCurrent VAR Word

' -----[Movement Support Codes]--
'
' The following state tables are lists of movement state numbers.
' A xx indicates the end of a list.
' These are used with the Movement routine.

TL CON 0
TC CON 1
TR CON 2

SL CON 3
SC CON 4
SR CON 5

xx CON 255

Experiment #5: Following Light

Page Page 8686 • Advanced Robotics with the Toddler 1.0

' -----[Movement Value Tables]--
'
' These can be used with the Movement routine.
' The tables can contain Basic Movement Codes.
'
' Note: ALL movement tables must be in this section

LeftSemicircle DATA 7, bLeftTurn, bLeftTurn, bForward, xx
RightSemicircle DATA 7, bRightTurn, bRightTurn, bForward, xx

WalkForward3 DATA 3, bForward, xx
WalkForward8 DATA 8, bForward, xx

' -----[Basic Movement Codes]--
'
' Used in Movement tables.
' Referenced below using LOOKUP statement.

bFinish CON 0
bForward CON 1
bBackward CON 2
bLeftTurn CON 3
bRightTurn CON 4
bPivotLeft CON 5
bPivotRight CON 6

' -----[Basic Movement Tables]--
'
' These tables can contain Movement Support Codes.

BasicMovements CON Forward

Forward DATA 1, TR, SL, TL, SR, xx
Backward DATA 1, TR, SL, TL, SR, xx

LeftTurn DATA 1, TL, SR, TC, SL, TL, SR, TR, SL, xx
RightTurn DATA 1, TR, SL, TC, SR, TR, SL, TL, SR, xx

PivotLeft DATA 3, TL, SR, TC, SL, TR, SR, TC, SL, xx
PivotRight DATA 3, TR, SL, TC, SR, TL, SL, TC, SR, xx

Finish DATA 1, TR, SC, TC, xx

'----- Photodetector Declarations --------------

 left_photo var word ' For storing measured RC times of
 right_photo var word ' the left & right photoresistors.

 left_pin con 10
 right_pin con 15

Experiment #5: Following Light

Advanced Robotics with the Toddler 1.0 • Page Page 8787

'----- Initialization ------------

 output 2 ' Set P2 to output.
 freqout 2, 2000, 3000 ' Declare a variable for counting.
 low 12 ' Set P12 and 13 to output-low.
 low 13

 GOSUB ResetCC ' Initialize feet

'----- Main Routine --------------

main:

 ' Measure RC time for left photoresistor.

 high left_pin ' Set detector to output-high.
 pause 3 ' Pause for 3 ms.
 rctime left_pin,1,left_photo ' Measure RC time on left detector.

 ' Measure RC time for right photoresistor.

 high right_pin ' Set detector to output-high.
 pause 3 ' Pause for 3 ms.
 rctime right_pin,1,right_photo ' Measure RC time on right detector.

 ' Take the difference between right_photo and left_photo, then decide what to do.

 if abs(left_photo-right_photo) > 8 then check_dir

' Check if difference between RC times is within the deadband, 2 in this case.
 ' If yes, then forward. If no then skip to check_dir subroutine.

 walk_forward:
 Mx = Forward
 GOSUB Movement
 goto main

 ' Jump to either right_turn or left_turn depending on which RC time is larger.

 check_dir:
 if left_photo > right_photo then turn_right
 if left_photo < right_photo then turn_left

'----- Navigation Routines -------

turn_left: ' turn left towards light
 Mx = PivotLeft
 GOSUB Movement
 goto main ' go back to main routine.

Experiment #5: Following Light

Page Page 8888 • Advanced Robotics with the Toddler 1.0

Turn_right: ' turn right towards light
 Mx = PivotRight
 GOSUB Movement
 goto main ' go back to main routine.

' -----[Subroutines]--

' ----- Movement: Move feet using DATA table referenced by Mx -----
'
' Input: Mx = movement table index, table ends in xx
' or
' Mx = submovement table index, table ends in xx
'
' Note: All submovment tables come after the movment tables in this file.

Movement:
 IF Mx < BasicMovements THEN SetupMovement

 MxCurrent = Mx ' setup to use submovement table
 MoveLoopLimit = 1
 GOTO StartMovement

SetupMovement:
 READ Mx, MoveLoopLimit ' read movement table repeat count
 MxCurrent = Mx + 1

StartMovement:
 FOR MoveLoop = 1 to MoveLoopLimit
 Mx = MxCurrent ' Mx = start of movement table

 'debug hex Mx, " Movement ", dec MoveLoop, " of ", dec MoveLoopLimit,cr

 IF Mx < BasicMovements THEN MovementLoop
 ' skip if movement table
 SxCurrent = Mx ' SxCurrent = submovement table index
 GOTO StartSubMovement ' enter middle of loop

MovementLoop:
 READ Mx, SxCurrent ' read next submovment byte
 Mx = Mx + 1
 IF SxCurrent = xx THEN MovementDone
 ' skip if end of list
 'debug " ", dec SxCurrent, " movement",cr
 LOOKUP
SxCurrent,[Finish,Forward,Backward,LeftTurn,RightTurn,PivotLeft,PivotRight],SxCurrent
 ' lookup submovement table index
StartSubMovement: ' start executing submovement table
 READ SxCurrent, SubMoveLoopLimit
 ' read submovement table repeat count
 SxCurrent = SxCurrent + 1

 FOR SubMoveLoop = 1 to SubMoveLoopLimit

Experiment #5: Following Light

Advanced Robotics with the Toddler 1.0 • Page Page 8989

 Sx = SxCurrent

 'debug " ", hex Sx, " submovement ", dec SubMoveLoop, " of ", dec SubMoveLoopLimit,cr

SubMovementLoop:
 READ Sx, Dx ' read next submovent action
 Sx = Sx + 1

 IF Dx = xx THEN SubMovementDone
 ' skip if end of list
 GOSUB DoMovement ' execute movement
 GOTO SubMovementLoop

SubMovementDone:
 NEXT
 IF Mx < BasicMovements THEN MovementLoop

MovementDone:
 NEXT
 RETURN

DoMovement:
 'debug " ", dec Dx, " action",cr
 BRANCH Dx,[TiltLeft,TiltCenter,TiltRight,StrideLeft,StrideCenter,StrideRight]
 ' will fall through if invalid index
 RETURN

' ---- Movement routines can be called directly ----

TiltLeft:
 NewValue = LeftTilt
 GOTO MovementTilt

TiltCenter:
 NewValue = CenterTilt
 GOTO MovementTilt

TiltRight:
 NewValue = RightTilt

MovementTilt:
 FOR Pulses = CurrentTilt TO NewValue STEP TiltStep
 PULSOUT TiltServo, Pulses
 PULSOUT StrideServo, CurrentStride
 PAUSE MoveDelay
 NEXT

 CurrentTilt = NewValue
 RETURN

StrideLeft:

Experiment #5: Following Light

Page Page 9090 • Advanced Robotics with the Toddler 1.0

 NewValue = LeftStride
 GOTO MovementStride

StrideCenter:
 NewValue = CenterStride
 GOTO MovementStride

StrideRight:
 NewValue = RightStride

MovementStride:
 FOR Pulses = CurrentStride TO NewValue STEP StrideStep
 PULSOUT TiltServo, CurrentTilt
 PULSOUT StrideServo, Pulses
 PAUSE MoveDelay
 NEXT

 CurrentStride = NewValue
 RETURN

' ----- Move feet to initial center position -----

ResetCC:
 CurrentTilt = CenterTilt
 CurrentStride = CenterStride

 FOR Pulses = 1 TO 100 STEP StrideStep
 PULSOUT TiltServo, CenterTilt
 PULSOUT StrideServo, CenterStride
 PAUSE MoveDelay
 NEXT

DoReturn:
RETURN

How the Light Follower Program Works

As in the previous program, the first IF...THEN statement tests for a difference in RC time measurements
within the deadband. This statement has been modified so that it skips the walk_forward routine if the
difference between RC times falls outside the deadband. On the other hand, if the difference in RC times is
within the deadband, the forward pulse is executed. After the forward pulse, the program is directed back to
main and the RC times are checked again.

 if abs(left_photo-right_photo) > 2 then check_dir

 walk_forward:
 Mx = Forward

Experiment #5: Following Light

Advanced Robotics with the Toddler 1.0 • Page Page 9191

 GOSUB Movement
 goto main

If the difference between RC times is not within the deadband, the program skips to the Check_dir label.
The IF...THEN statements following the Check_dir label are used to decide whether to apply a pulse to the
left or a pulse to the right depending on the inequality of the right_photo and left_photo values. In this
way, the program either applies a single forward pulse or a single turn pulse each time the photoresistors are
checked.

 check_dir:
 if left_photo > right_photo then turn_right
 if left_photo < right_photo then turn_left

Experiment #5: Following Light

Page Page 9292 • Advanced Robotics with the Toddler 1.0

1. Repeat the previous Your Turn exercise. You can now lead your Toddler around with a flashlight.

2. Instead of pointing the photoresistors at the surface directly in front of the Toddler, point them upward
and outward. With the photoresistors adjusted this way, the Toddler will roam on the floor and try to
always find the brightest place.

3. Depending on the luminance gradient, you may have to increase the deadband to smooth out the
Toddler’s light roaming. Alternatively, the deadband may need to be decreased to make it more
responsive to seeking out the brighter areas.

Challenges

Experiment #6: Object Avoidance with Infrared

Advanced Robotics with the Toddler 1.0 • Page Page 9393

Using Infrared Headlights to See the Road

Today's hottest products seem to have one thing in
common: wireless communication. Personal organizers
beam data into desktop computers, and wireless remotes
let us channel surf. With a few inexpensive and widely

available parts, the BASIC Stamp can also use an infrared LED and detector to detect objects to the front and
side of your traveling Toddler.

Detecting obstacles doesn’t require anything as sophisticated as machine
vision. A much simpler system will suffice. Some robots use RADAR or
SONAR (sometimes called SODAR when used in air instead of water). An
even simpler system is to use infrared light to illuminate the robot’s path
and determine when the light reflects off an object. Thanks to the
proliferation of infrared (IR) remote controls, IR illuminators and
detectors are easily available and inexpensive.

The Toddler infrared object detection scheme has a variety of uses. The
Toddler can use infrared to detect objects without bumping into them. As
with the photoresistors, infrared can be used to detect the difference
between black and white for line following. Infrared can also be used to
determine the distance of an object from the Toddler. The Toddler can
use this information to follow objects at a fixed distance, or detect and
avoid high ledges.

Infrared Headlights

The infrared object detection system we’ll build on the Toddler is like a
car’s headlights in several respects. When the light from a car’s headlights
reflects off obstacles, your eyes detect the obstacles and your brain
processes them and makes your body guide the car accordingly. The
Toddler uses infrared LEDs for headlights. They emit infrared, and in some
cases, the infrared reflects off objects, and bounces back in the direction

of the Toddler. The eyes of the Toddler are the infrared detectors. The infrared detectors send signals to the
BASIC Stamp indicating whether or not they detect infrared reflected off an object. The brain of the Toddler,
the BASIC Stamp, makes decisions and operates the servo motors based on this input.

Experiment #6: Object
Avoidance with
Infrared

Infrared?

Infra means below, so Infra-red is light
(or electromagnetic radiation) that has
lower frequency, or longer wavelength
than red light. Our IR LED and
detector work at 980 nm. (nanometers)
which is considered near infrared.
Night-vision goggles and IR
temperature sensing use far infrared
wavelengths of 2000-10,000 nm.,
depending on the application.

 Approximate
Color Wavelength
Violet 400 nm
Blue 470
Green 565
Yellow 590
Orange 630
Red 780
Near infra-red 800-1000
Infra-red 1000-2000
Far infra-red 2000-10,000nm

Experiment #6: Object Avoidance with Infrared

Page Page 9494 • Advanced Robotics with the Toddler 1.0

The IR detectors have built-in optical filters that allow very little light except the 980 nm. infrared that we
want to detect onto its internal photodiode sensor. The infrared detector also has an electronic filter that
only allows signals around 38.5 kHz to pass through. In other words, the detector is only looking for infrared
flashed on and off at 38,500 times per second. This prevents interference from common IR interference
sources such as sunlight and indoor lighting. Sunlight is DC interference (0 Hz), and house lighting tends to
flash on and off at either 100 or 120 Hz, depending on the main power source in the country where you
reside. Since 120 Hz is way outside the electronic filter’s 38.5 kHz band pass frequency, it is, for all practical
purposes, completely ignored by the IR detectors.

The FREQOUT Trick

Since the IR detectors only see IR signals in the neighborhood of 38.5 kHz, the IR LEDs have to be flashed on
and off at that frequency. A 555 timer can be used for this purpose, but the 555 timer circuit is more complex
and less functional than the circuit we will use in this and the next chapter. For example, the method of IR
detection introduced here can be used for distance detection; whereas, the 555 timer would need additional
hardware to do distance detection.

A pair of Toddler enthusiasts found an interesting trick that made the 555 timer scheme unnecessary. This
scheme uses the FREQOUT command without the RC filter that’s normally used to smooth the signal into a
sine-wave. Even though the highest frequency FREQOUT is designed to transmit is 32768 Hz, the unfiltered
FREQOUT output contains a harmonic with useful properties for a 38.5 kHz IR detector. More useful still is
the fact that you can use a command such as FREQOUT Pin, Period, 38500 to send a 38.5 kHz harmonic
that the IR detector will detect.

Figure 6.1 shows (a) the signal sent by the command FREQOUT Pin, Period, 27036. Tuned electronic
receivers, such as the IR detectors we’ll be using, can detect components of this signal that are called
harmonics. The FREQOUT signal’s two dominant low frequency harmonics are shown in Figures 6.1 (b) and (c).
Figure 6.1 (b) shows the fundamental harmonic, and Figure 6.1 (c) shows the third harmonic. These harmonics
are actually components of the unfiltered FREQOUT pulses shown in Figure 6.1 (a). The third harmonic shown
in Figure 6.1 (c) can be controlled directly by entering commands such as FREQOUT Pin, Period, 38500
(instead of 27036) for 38.5 kHz, or FREQOUT Pin, Period, 40000 for 40 kHz, etc.

Experiment #6: Object Avoidance with Infrared

Advanced Robotics with the Toddler 1.0 • Page Page 9595

Figure 6.1: FREQOUT Example Properties

Volts, V

+ 1.25

- 1.25

0

0 Time, us 37(b)
(b) 27036 Hz fundamental harmonic.

0 37Time, us
0

+ 5

Volts, V

+ 1.25

- 1.25

0

0 Time, us 37
Figure 6.2: (a) Unfiltered freqout pulses sent by freqout
pin, period, 27036 (c) 38500 Hz third harmonic.

Even though the “freqout” trick works, there is an additional problem. The BASIC Stamp does not multitask.
The reason this is a problem is because the IR detector only sends the low signal indicating that it has
detected an object while it is receiving the 38.5 kHz IR. Otherwise, it sends a high signal. Fortunately, it takes
the detector long enough to rebound from its low output state that the BASIC Stamp can capture the value.
The reason that the detector’s output takes so long to rebound is related to its tendency toward slower
responses when it receives a signal with unequal high and low times, of which the signal in Figure 5.2 (a) has
many.

Activity #1: Building and Testing the New IR Transmitter/Detector

The circuit requires just a few parts:

 (1) Piezoelectric speaker
 (2) Shrink wrapped IR LEDs
 (2) IR detectors
 (misc) wires

Figure 6.2 shows the part schematic and pictorials. Figure 6.3 is the schematic. Build this circuit on your
Toddler board. Note that the 220 ohm resistors are already built into the Toddler PCB; just plug in the
infrared LEDs and your Toddler will be ready.

Experiment #6: Object Avoidance with Infrared

Page Page 9696 • Advanced Robotics with the Toddler 1.0

Figure 6.2: Infrared LED and Receiver

 IR
LED 1

2

1

2 Short
Leg

1
2
3

1
2
3

Figure 6.3: Infrared Detector Schematic
Note: the 220 ohm resistors are built into the Toddler PCB

220 Ohm
P10

Vss

IR
LED

P11

Vdd

Vss

220 Ohm
P15

Vss

IR
LED

P14

Vdd

Vss

P2 Piezospeaker

Vss

Left Infrared Circuit Right Infrared Circuit

Experiment #6: Object Avoidance with Infrared

Advanced Robotics with the Toddler 1.0 • Page Page 9797

Figure 6.4: Finished Infrared Circuit on Toddler

One IR pair (IR LED and detector) is mounted on each corner of the Toddler breadboard.

Testing the IR Pairs

The key to making each IR pair work is to send 1 ms of unfiltered 38.5 kHz FREQOUT harmonic followed
immediately by testing the signal sent by the IR detector and saving its output value. The IR detector’s normal
output state when it sees no IR signal is high. When the IR detector sees the 38500 Hz harmonic sent by the IR
LED, it’s output will drop from high to low. Of course, if the IR does not reflect off an object, the IR detector’s
output simply stays high. Program 6.1 shows an example of this method of reading the detectors.

Experiment #6: Object Avoidance with Infrared

Page Page 9898 • Advanced Robotics with the Toddler 1.0

q Enter and run Program Listing 6.1.

q This program makes use of the BASIC Stamp Editor’s DEBUG Terminal, so leave the serial cable connected

to the Toddler while Program Listing 6.1 is running.

' Toddler Program 6.1: IR Pairs Display
' {$Stamp bs2} ' Stamp Directive.

'----- Declarations --------------

 left_IR_det var bit ' Two bit variables for saving IR
 right_IR_det var bit ' detector output values.

 left_pin con 10
 right_pin con 15

 left_in var in11
 right_in var in14

'----- Initialization ------------

 output left_pin ' signals to function as outputs
 output right_pin

'----- Main Routine --------------

main:
 ' Detect object on the left.
 freqout left_pin, 1, 38500 ' Send freqout signal - left IR LED.
 left_IR_det = left_in ' Store IR detector output in RAM.
 ' Detect object on the right.
 freqout right_pin, 1, 38500 ' Repeat for the right IR pair.
 right_IR_det = right_in

 debug home, "Left= ", bin1 left_IR_det
 pause 20
 debug " Right= ", bin1 right_IR_det
 pause 20

goto main

q While program Listing 6.1 is running, point the IR detectors so nothing nearby could possibly reflect

infrared back at the detectors. The best way to do this is to point the Toddler up at the ceiling. The
DEBUG output should display both left and right values as equal to “1.”

q By placing your hand in front of an IR pair, it should cause the DEBUG Terminal display for that detector

to change from “1” to “0.” Removing your hand should cause the output for that detector to return to a

Experiment #6: Object Avoidance with Infrared

Advanced Robotics with the Toddler 1.0 • Page Page 9999

“1” state. This should work for each individual detector, and you also should be able to place your hand
in front of both detectors and make both their outputs change from “1” to “0.”

q If the IR Pairs passed all these tests, you’re ready to move on; otherwise, check your program and circuit

for errors.

How the IR Pairs Display Program Works

Two bit variables are declared to store the value of each IR detector output. The first FREQOUT command in
the MAIN routine is different. The command FREQOUT left_pin, 1, 38500 sends the on-off pattern
shown in Figure 6.2 via left IR LED circuit by causing it to flash on and off rapidly. The harmonic contained in
this signal either bounces off an object, or not. If it bounces off an object and is seen by the IR detector, the
IR detector sends a low signal to I/O pin left_in. Otherwise, the IR detector sends a high signal to left_in.
So long as the next command after the FREQOUT command is the one testing the state of the IR detector’s
output, it can be saved as a variable value in RAM. The statement left_IR_det = left_in checks
left_in, and saves the value (“1” for high or “0” for low) in the left_IR_det bit variable. This process is
repeated for the other IR pair, and the IR detector’s output is saved in the right_IR_det variable. The
DEBUG command then displays the values in the debug window.

Your Turn

q Experiment with detuning your IR pairs by using frequencies above 38.5 kHz. For example, try 39.0, 39.5,

40.0, 40.5 and 41 kHz. Note the maximum distance that each will detect by bringing an object
progressively closer to the IR pairs and noting what distance began to cause the IR detector output to
switch from “1” to “0.”

Experiment #6: Object Avoidance with Infrared

Page Page 100100 • Advanced Robotics with the Toddler 1.0

Activity #2: Object Detection and Avoidance

The IR pairs provide range information that the Toddler can be use to avoid obstacles. A simple program can
simply avoid obstacles providing a random walk around a room without causing a collision. Obstacles must be
high enough to be detected by the Toddler’s IR detectors.

Real-Time IR Navigation

Program Listing 6.2 checks the IR pairs and delivers one of four different pulses based on the sensors. Each
of the navigational routines is just a single pulse in the Forward, Left_turn, Right_turn or Backward
directions. After the pulse is applied, the sensors are checked again, then another pulse is applied, etc. This
program also makes use of some programming techniques you will find very useful.

' Toddler Program 6.2: Object Detection And Avoidance
' {$Stamp bs2} ' Stamp Directive.

' -----[I/O Definitions]--

TiltServo CON 13 ' Tilt servo on P12
StrideServo CON 12 ' Stride servo on P13

' -----[Constants]--

MoveDelay CON 25 ' in micrcoseconds

TiltStep CON 10 ' TiltServo step size

RightTilt CON 620 ' Tilt limits
CenterTilt CON 750
LeftTilt CON 880

StrideStep CON 10 ' StrideServo step size

RightStride CON 650 ' Stride limits
CenterStride CON 750
LeftStride CON 850

' -----[Variables]--

FigureLoop VAR Nib
MoveLoop VAR Byte ' Loop for repeat movements
MoveLoopLimit VAR Byte

SubMoveLoop VAR Byte ' Loop for repeat submovements

Experiment #6: Object Avoidance with Infrared

Advanced Robotics with the Toddler 1.0 • Page Page 101101

SubMoveLoopLimit VAR Byte

Pulses VAR Word ' Pulse variable

CurrentTilt VAR Word
CurrentStride VAR Word
NewValue VAR Word

Dx VAR Pulses

Mx VAR Word
MxCurrent VAR Word

Sx VAR Word
SxCurrent VAR Word

' -----[Movement Support Codes]--
'
' The following state tables are lists of movement state numbers.
' A xx indicates the end of a list.
' These are used with the Movement routine.

TL CON 0
TC CON 1
TR CON 2
SL CON 3
SC CON 4
SR CON 5
xx CON 255

' -----[Movement Value Tables]--
'
' These can be used with the Movement routine.
' The tables can contain Basic Movement Codes.
'
' Note: ALL movement tables must be in this section

LeftSemicircle DATA 7, bLeftTurn, bLeftTurn, bForward, xx
RightSemicircle DATA 7, bRightTurn, bRightTurn, bForward, xx

WalkForward3 DATA 3, bForward, xx
WalkForward8 DATA 8, bForward, xx

' -----[Basic Movement Codes]--
'
' Used in Movement tables.
' Referenced below using LOOKUP statement.

bFinish CON 0
bForward CON 1

Experiment #6: Object Avoidance with Infrared

Page Page 102102 • Advanced Robotics with the Toddler 1.0

bBackward CON 2
bLeftTurn CON 3
bRightTurn CON 4
bPivotLeft CON 5
bPivotRight CON 6

' -----[Basic Movement Tables]--
'
' These tables can contain Movement Support Codes.

BasicMovements CON Forward

Forward DATA 1, TR, SL, TL, SR, xx
Backward DATA 1, TR, SR, TL, SL, xx

LeftTurn DATA 1, TL, SR, TC, SL, TL, SR, TR, SL, xx
RightTurn DATA 1, TR, SL, TC, SR, TR, SL, TL, SR, xx

PivotLeft DATA 3, TL, SR, TC, SL, TR, SR, TC, SL, xx
PivotRight DATA 3, TR, SL, TC, SR, TL, SL, TC, SR, xx

Finish DATA 1, TR, SC, TC, xx

'----- Declarations --------------
 ' The lower 2 bits of the
 sensors var nib ' sensors variable are used to store
 ' IR detector values.
 left_pin con 10
 right_pin con 15

 left_in var in11
 right_in var in14

'----- Initialization ------------

 output 2 ' Set all I/O lines sending freqout
 output left_pin ' signals to function as outputs
 output right_pin
 freqout 2, 2000, 3000 ' Program start/restart signal.

 GOSUB ResetCC ' Initialize feet

'----- Main Routine --------------

main:
 FREQOUT left_pin,1,38500 ' Send freqout signal - left IRLED.
 sensors.bit0 = left_in ' Store IR detector output in RAM.
 ' Detect object on the right.
 FREQOUT right_pin,1,38500 ' Repeat for the right IR pair.
 sensors.bit1 = right_in

Experiment #6: Object Avoidance with Infrared

Advanced Robotics with the Toddler 1.0 • Page Page 103103

 PAUSE 18 ' 18 ms pause(2 ms lost on freqout).

 ' By loading the IR detector output values into the lower 2 bits of the sensors
 ' variable, a number btwn 0 and 3 that the branch command can use is generated.

 LOOKUP sensors,[Backward,PivotLeft,PivotRight,Forward],Mx

 GOSUB Movement
 GOTO main

' -----[Subroutines]--
'
' ----- Movement: Move feet using DATA table referenced by Mx -----
'
' Input: Mx = movement table index, table ends in xx
' or
' Mx = submovement table index, table ends in xx
'
' Note: All submovment tables come after the movment tables in this file.

Movement:
 IF Mx < BasicMovements THEN SetupMovement

 MxCurrent = Mx ' setup to use submovement table
 MoveLoopLimit = 1
 GOTO StartMovement

SetupMovement:
 READ Mx, MoveLoopLimit ' read movement table repeat count
 MxCurrent = Mx + 1

StartMovement:
 FOR MoveLoop = 1 to MoveLoopLimit
 Mx = MxCurrent ' Mx = start of movement table

 debug hex Mx, " Movement ", dec MoveLoop, " of ", dec MoveLoopLimit,cr

 IF Mx < BasicMovements THEN MovementLoop
 ' skip if movement table
 SxCurrent = Mx ' SxCurrent = submovement table index
 GOTO StartSubMovement ' enter middle of loop

MovementLoop:
 READ Mx, SxCurrent ' read next submovment byte
 Mx = Mx + 1
 IF SxCurrent = xx THEN MovementDone
 ' skip if end of list
 debug " ", hex SxCurrent, " movement",cr
 LOOKUP
SxCurrent,[Finish,Forward,Backward,LeftTurn,RightTurn,PivotLeft,PivotRight],SxCurrent
 ' lookup submovement table index
StartSubMovement: ' start executing submovement table

Experiment #6: Object Avoidance with Infrared

Page Page 104104 • Advanced Robotics with the Toddler 1.0

 READ SxCurrent, SubMoveLoopLimit
 ' read submovement table repeat count
 SxCurrent = SxCurrent + 1

 FOR SubMoveLoop = 1 to SubMoveLoopLimit
 Sx = SxCurrent

 debug " ", hex Sx, " submovement ", dec SubMoveLoop, " of ", dec SubMoveLoopLimit,cr

SubMovementLoop:
 READ Sx, Dx ' read next submovent action
 Sx = Sx + 1

 IF Dx = xx THEN SubMovementDone
 ' skip if end of list
 GOSUB DoMovement ' execute movement
 GOTO SubMovementLoop

SubMovementDone:
 NEXT
 IF Mx < BasicMovements THEN MovementLoop
 ' exit if submovement table
MovementDone:
 NEXT
 RETURN

DoMovement:
 debug " ", dec Dx, " action",cr
 BRANCH Dx,[TiltLeft,TiltCenter,TiltRight,StrideLeft,StrideCenter,StrideRight]
 ' will fall through if invalid index
 RETURN

' ---- Movement routines can be called directly ----

TiltLeft:
 NewValue = LeftTilt
 GOTO MovementTilt

TiltCenter:
 NewValue = CenterTilt
 GOTO MovementTilt

TiltRight:
 NewValue = RightTilt

MovementTilt:
 FOR Pulses = CurrentTilt TO NewValue STEP TiltStep
 PULSOUT TiltServo, Pulses
 PULSOUT StrideServo, CurrentStride
 PAUSE MoveDelay
 NEXT

Experiment #6: Object Avoidance with Infrared

Advanced Robotics with the Toddler 1.0 • Page Page 105105

 CurrentTilt = NewValue
 RETURN

StrideLeft:
 NewValue = LeftStride
 GOTO MovementStride

StrideCenter:
 NewValue = CenterStride
 GOTO MovementStride

StrideRight:
 NewValue = RightStride

MovementStride:
 FOR Pulses = CurrentStride TO NewValue STEP StrideStep
 PULSOUT TiltServo, CurrentTilt
 PULSOUT StrideServo, Pulses
 PAUSE MoveDelay
 NEXT

 CurrentStride = NewValue
 RETURN

' ----- Move feet to initial center position -----

ResetCC:
 CurrentTilt = CenterTilt
 CurrentStride = CenterStride

 FOR Pulses = 1 TO 100 STEP StrideStep
 PULSOUT TiltServo, CenterTilt
 PULSOUT StrideServo, CenterStride
 PAUSE MoveDelay
 NEXT

DoReturn:
RETURN

Experiment #6: Object Avoidance with Infrared

Page Page 106106 • Advanced Robotics with the Toddler 1.0

How IR Roaming by Numbers in Real-Time Works

q Look up the LOOKUP command in Appendix C: PBASIC Quick Reference or in the BASIC Stamp Manual.

This Program listing declares the SENSORS variable, which is one nibble of RAM. Of the four bits in the sensors
variable, only the lowest two bits are used. Bit-0 is used to store the left detector’s output, and bit-1 is used
to store the right detector’s output.

declarations:
 sensors var nib

The main routine starts with the FREQOUT commands used to send the IR signals, but the commands following
each freqout command are slightly different from those used in the previous program. Instead of saving the
bit value at the input pin to a bit variable, each bit value is stored as a bit in the SENSORS variable. Bit-0 of
SENSORS is set to the binary value of in8, and bit-1 of the sensors variable is set to the binary value of in0.
After setting the values of the lower two bits of the sensors variable, it will have a decimal value between “0”
and “3.” The BRANCH command uses these numbers to determine to which label it sends the program.

main:
 FREQOUT left_pin,1,38500
 sensors.bit0 = left_in

 FREQOUT right_pin,1,38500
 sensors.bit1 = right_in

 PAUSE 18

 LOOKUP sensors,[Backward,PivotLeft,PivotRight,Forward],Mx

 GOSUB Movement
 GOTO main

The four possible binary numbers that result are shown in Table 6.1. Also shown is the lookup action that
occurs based on the value of the state argument.

Experiment #6: Object Avoidance with Infrared

Advanced Robotics with the Toddler 1.0 • Page Page 107107

Table 6.1: IR Detector States as Binary Numbers

Binary Value
of state

 Decimal Value
of State

What the Value Indicates,
Branch Action Based on State

0000 0 left_in = 0 and right_in = 0,
Both IR detectors detect object, pulse servos backward.

0001 1 left_in = 0 and right_in = 1,
Left IR detector detects object, pulse right_turn

0010 2 left_in = 1 and right_in = 0,
Right IR detector detects object, pulse for left_turn

0011 3 left_in = 1 and right_in = 1,
Neither IR detector detects object, pulse forward.

The Mx variable is set to the appropriate movement table index. The Movement routine then performs the
appropriate sequence of commands.

Experiment #6: Object Avoidance with Infrared

Page Page 108108 • Advanced Robotics with the Toddler 1.0

You can rearrange the address labels in the lookup command so that the Toddler does different things in
response to obstacles. One interesting activity is to try replacing the Backward address with the Forward
address. There will be two instances of Forward in the Lookup address list, but this is not a problem. Also,
swap the Left_turn and Right_turn addresses.

q Try making the changes just discussed.

If you stop your hand, the Toddler will run into it. Because of this, one Toddler cannot be programmed to
follow another without some way of distance detection. If the one in front stops, the one in back will crash
into it. This problem will be fixed as an example in the next chapter.

Challenges

Experiment #7: Staying on the Table

Advanced Robotics with the Toddler 1.0 • Page Page 109109

What’s a Frequency Sweep?

In general, a frequency sweep is what you do when
checking your favorite radio stations. Set the station for
one frequency, and check the output. If you don’t like the
song that’s playing, change the frequency and check the
output again.

 Activity #1: Testing the Frequency Sweep

The Toddler can be programmed to send different IR frequencies, and to check for object detection at each
frequency. By keeping track of the frequencies for which the IR detector reported an object, its distance can
be determined. The left axis of the graph in Figure 7.1 shows how the sensitivity of the IR detector’s electronic
filter decreases as it receives frequencies greater than 38.5 kHz. The filter essentially causes the IR detector
to become less able to detect IR at these frequencies. Another way to think about it is that you have to move
an object closer if you want it to be detected at a less sensitive frequency. Since the detector is less sensitive,
it will take brighter IR (or a closer object) to make the detector see the signal.

Figure 7.1: Relative IR Sensitivity to Frequency

Experiment #7:
Staying on the Table

Experiment #7: Staying on the Table

Page Page 110110 • Advanced Robotics with the Toddler 1.0

Figure 7.1 compares the left axis of the graph (IR frequency) to the relative sensitivity of the IR detector. The
right side of the graph shows how the relative sensitivity of the IR detector relates to distance detection. As
detector sensitivity decreases with the increase in frequency, the object must be closer for the IR signal to be
detected. Why closer? When the detectors are made less sensitive by sending higher frequencies, it’s like
giving them darker and darker lenses to look through. Just as a flashlight beam appears brighter when
reflected off an object that’s closer to you, IR reflected off a closer object appears brighter to the IR
detectors.

The right axis of Figure 7.1 shows how different frequencies can be used to indicate in which zone a detected
object is located. By starting with a frequency of 38.5 kHz, whether or not an object is in Zone 1-5 can be
determined. If an object is not yet detected, it must be beyond the detector limit (Zone 0). If an object is
detected, by testing again at 39.25 kHz, the first datum about distance is collected. If 38.5 kHz is detected the
object but 39.25 kHz did not, the object must be in Zone 1. If the object was detected at both frequencies, but
not at 40.5 kHz, we know it’s in Zone 2. If all three frequencies detected the object, but it was not detected at
41.75 kHz, we know it is in Zone 3. If all four frequencies detected the object, but not 42.5 kHz, we know it’s in
Zone 4. If all the frequencies detected the object, we know it’s in Zone 5.

!

The frequency sweep technique used in this chapter works fairly well for the Toddler,
and the components are only a fraction of the cost of common IR distance sensors.
The trade off is that the accuracy of this method is also only a fraction of the accuracy
of common IR distance sensors. For basic Toddler tasks that require some distance
perception, such as following another Toddler, this interesting technique does the
trick. Along with adding low-resolution distance perception to the Toddler’s senses, it
also provides an introduction to the concepts of filters and frequency response.

Build It!

q Use the same IR detection circuit from Chapter 6, shown in Figure 6.4, for this activity.

Programming the IR Distance Gage

Programming the BASIC Stamp to send different frequencies involves a FOR...NEXT loop. The Counter
variable can be used to give the FREQOUT command different frequencies to check. This program introduces
the use of arrays. Arrays are used in Program 7.1 to store the IR detector outputs at the different
frequencies. For the l_values variable, the Zone 0 output is stored in bit-0 of l_values. The Zone 1
output is stored in bit-1 l_values.bit1, and so on, all the way through Zone 5, which is stored in bit-5 of
l_values. The same measurements are taken for r_values.

Experiment #7: Staying on the Table

Advanced Robotics with the Toddler 1.0 • Page Page 111111

q Enter and run Program Listing 7.1.

q This program makes use of the Debug Terminal, so leave the serial cable connected to the Toddler while

Program Listing 7.1 is running.

' Toddler Program 7.1: IR Distance Gage
' {$Stamp bs2} ' Stamp Directive.

'----- Declarations --------------

 counter var nib ' Multipurpose counting variable.
 l_values var byte ' Two vars for storing left & right
 r_values var byte ' freq sweep IR detector outputs.
 IR_freq var word ' Stores frequency arg for freqout.

 left_pin con 10
 right_pin con 15

 left_in var in11
 right_in var in14

'----- Initialization ------------

 output left_pin ' Set all I/O lines sending freqout
 output right_pin ' signals to function as outputs.

'----- Main Routine --------------

 main:

 l_values = 0 ' Reset l_values and r_values to 0.
 r_values = 0

 ' Load sensor outputs into l_values and r_values using a for...next loop,
 ' and a lookup table, and bit addressing.

 for counter = 0 to 4

 lookup counter,[37500,38250,39500,40500,41500], IR_freq

 freqout left_pin,1, IR_freq
 l_values.lowbit(counter) = ~left_in

 freqout right_pin,1, IR_freq
 r_values.lowbit(counter) = ~right_in

 next

 ' Display l_values and r_values in binary and ncd format.

 debug home, cr, cr, "Left readings Right Readings", cr

Experiment #7: Staying on the Table

Page Page 112112 • Advanced Robotics with the Toddler 1.0

 debug " ",bin8 l_values, " ", bin8 r_values, cr
 debug " ",dec5 ncd(l_values), " ", dec5 ncd(r_values), cr, cr

 goto main

When the Toddler is placed facing a nearby wall (3 to 5 cm.), the Debug Terminal should display something
similar to Figure 7.2. As the Toddler is moved closer to and further from the wall, the numbers displayed by
the Debug Terminal should change increase and decrease. Each “1” represents a zone so that when you see
five 1’s the object is nearest to the Toddler.

Figure 7.2: Frequency sweep data in binary and NCD format.

q Place the Toddler so that it faces the wall with its IR LEDs about 1 cm. away from the wall. The left and
right readings should both be at “4” or “5.” If not, make sure each IR detector is facing in the same
direction as its IR LED.

q Gradually back the Toddler away from the wall. As the Toddler is backed away from the wall, the left and

right readings should gradually decrease to “0.”

q If either or both sides stay at all zeros or all ones, it indicates a possible mistake in either your wiring or

in the program. If this is the case, unplug your battery pack from the Toddler. Then, check your wiring
and PBASIC code for errors.

Experiment #7: Staying on the Table

Advanced Robotics with the Toddler 1.0 • Page Page 113113

!

The maximum detection distance is 20 to 30 cm., depending on the reflectivity of the
wall. Some tinkering with how far left/right each IR pair is pointing may be required
to get the numbers to be the same at a given distance. A high level of precision IS
NOT necessary for these activities.

ü
TIP

Use a wire stripper to unsheathe about 1 cm. of insulation from a jumper wire. Slide
the insulation up one of the IR LED leads. This will protect the leads from touching
each other during adjustment.

How the Distance Gauge Program Works

q Look up the LOOKUP command in the BASIC Stamp Manual before continuing.

Counter is a nibble variable that is used to index a FOR...NEXT loop. The FOR...NEXT loop is used for
checking the IR detectors at various frequencies. The l_values and r_values variables store the outputs
for the left and right IR detectors at the various frequencies used. Each variable stores five binary
measurements. Since the IR detector outputs are tested at a variety of frequencies, IR_freq is a variable
that can store the value of the frequency that gets sent each time through the frequency testing loop.

declarations:

 counter var nib
 l_values var byte
 r_values var byte
 IR_freq var word

The main routine contains two routines, one for frequency sweep and another for displaying the data
collected. The first step in the frequency sweep is setting l_values and r_values to zero. This is
important since individual bits in each variable are modified. Clearing l_values and r_values starts each
variable with a clean slate. Then individual bits can be set to “1” or “0,” depending on what the IR detectors
report.

main:

 l_values = 0
 r_values = 0

Experiment #7: Staying on the Table

Page Page 114114 • Advanced Robotics with the Toddler 1.0

The for…next loop is where the frequency sweep occurs. The lookup command checks the counter value
to determine which frequency to copy to the IR_freq variable. When counter is “0,” 37500 gets copied to
IR_freq. When counter is “1,” 38250 is copied to IR_freq. As the value of counter is incremented from
“0” to “4” by the for...next loop, each successive value in the lookup table is copied to IR_freq.

 for counter = 0 to 4

 lookup counter,[37500,38250,39500,40500,41500],IR_freq

Note that the lookup table begins the frequency sweep at 37500 (most sensitive) and ends at 41500 (least
sensitive). You might be wondering why the numbers in the lookup table don’t match the frequency values
from Figure 7.1. It’s true that if the BASIC Stamp could transmit a 50% duty cycle pulse train (pulses with the
same high time and low time) at these frequencies, they would have to match the frequencies specified for
the IR detector’s filter. However, the FREQOUT command introduces other factors that affect the amplitude
of the harmonics transmitted by the IR LEDs. The math involved in predicting the optimum frequency
arguments to use is very advanced and is well outside the scope of this text. Even so, the best frequencies for
a given distance can be determined experimentally. The list of values we are using are known to be reliable.

The left sensor is checked by using freqout to send the current value of IR_freq. Next, the .lowbit()
argument is used to address each successive bit in l_values. When counter is “0,” the
.lowbit(counter) argument addresses bit-0 of l_values. When counter is “1,” the
.lowbit(counter) argument addresses bit-1 of l_values, and so on. Before writing the value of in8 to
l_values.lowbit(counter), the NOT operator (~) is used to invert the bit’s value before it is stored to its
bit array location in l_values. The same process is then repeated for r_values. After the fifth time
through the for...next loop, the IR data bits have all been loaded into l_values and r_values.

 freqout left_pin,1,IR_freq
 l_values.lowbit(counter) = ~left_in

 freqout right_pin,1,IR_freq
 r_values.lowbit(counter) = ~right_in

 next

The display subroutine uses a variety of formatters and text strings to display the l_values and r_values
variables. The first row of the display is the text heading indicating which readings correspond the right IR
detector and which readings correspond to the left IR detector. Remember that left and right are treated as
though you are sitting in the Toddler’s body.

display:
 debug home, cr, cr, "Left readings Right Readings", cr

Experiment #7: Staying on the Table

Advanced Robotics with the Toddler 1.0 • Page Page 115115

The second row displays l_values and r_values in binary format. This allows for observation of how the
bit values in l_values and r_values change as the apparent distance of an object changes.

 debug " ",bin8 l_values, " ", bin8 r_values, cr

The third row displays the ncd value of each variable. The NCD operator returns a value that corresponds to
the location of the most significant bit in a variable. If the variable is all zeros, ncd returns a zero. If the least
significant bit contains a “1,” and all the rest of the digits are “0,” NCD returns a “1.” If bit-1 contains a “1,” but
all the numbers to the left of bit-1 are zeros, ncd returns a “2,” and so on. The NCD operator is a handy way
of indicating how many ones have been loaded into the lower bits of l_values and r_values. What’s really
handy is that ncd directly tells you in which zone the object has been detected.

 debug " ",dec5 ncd(l_values), " ", dec5 ncd(r_values), cr, cr

When the display routine is finished sending data to the Debug Terminal, program control is returned to the
main label.

goto main

Your Turn

q With Program 7.1 running, place the Toddler facing the wall so that the IR LEDs are about 1.5 cm. from

the wall. For best results, tape a white sheet of paper to the wall.

q Make a note of the left and right readings.

q Start pulling the Toddler away from the wall.

q Each time the value of one or the other sensors decreases, make a note of the distance. In this way you

can determine the zones for each of your Toddler’s IR pairs.

q If the readings on one side are consistently larger than the other, you can point the IR LED on the side

reporting the larger readings outward a little further. For example, if the left IR pair continually reports
higher readings than the right IR pair, try pointing the left IR LED and detector a little further to the left.

Experiment #7: Staying on the Table

Page Page 116116 • Advanced Robotics with the Toddler 1.0

Activity #2: The Drop-off Detector

Figure 7.3: IR LED Adjustment for Edge Detection.

One application for distance detection is checking for a drop-off. For example, if the Toddler is navigating on
a table, it can change direction if it sees the edge of the table. All you have to do is point the IR pairs
downward so that they are both pointing at the table right in front of the Toddler. A distance detection
program can then be used to detect that the table is close-up. When the Toddler nears the edge of a table,
one or both of the distance detectors will start reporting that they no longer see something close-up. That
means it’s time to turn away from the abyss. This program works best on a light-colored table. Darker tables
will absorb more light and be less useful at reflecting infrared.

q Point your IR pairs at the surface directly in front of the Toddler as shown in Figure 7.3. The IR pairs

should be pointed downward at least 45° from horizontal and outward 45° from the Toddler’s center
line.

q Perform the tests below using Program 7.1 before trying Program 7.2.

q Record the IR pair outputs when the Toddler is looking straight at the table. If the values of the IR pairs

when they are looking at your tabletop are “3” or more, it indicates your detectors are seeing what they
are supposed to see.

q Record the IR pair outputs when the Toddler is looking off the edge of the table. If these values remain

less than “3,” the Toddler is ready to try Program Listing 7.2.

Experiment #7: Staying on the Table

Advanced Robotics with the Toddler 1.0 • Page Page 117117

q If the Toddler does not give you steady and consistent readings of “3” or more when the Toddler is
looking at the table, try first adjusting the direction the IR pairs are pointing. Also, if the Toddler does not
consistently register less than “3” when it’s looking off the edge of the table, some additional adjustment
of the IR pairs also is in order.

q If the sensors report “3” or more while looking at the table and “2” or less when looking off the edge, the

Toddler is ready for Program Listing 7.2.

!

Make sure to be the spotter for your Toddler when running Program Listing 7.2.
Always be ready to pick your Toddler up as it approaches the edge of the table it’s
navigating. If the Toddler tries to drive off the edge, pick it up before it takes the
plunge. Otherwise, your Toddler might become a Not-Bot!

When spotting your Toddler while it’s avoiding drop-offs, be ready to pick it up from
above. Otherwise, the Toddler will see your hands instead of the drop-off and not
perform as expected..

Programming for Drop-Off Detection

Program Listing 7.2 uses modified versions of the forward, right_turn, left_turn and backward routines that
have been used and reused in every chapter since Chapter #2. The number of pulses in each routine have
been adjusted for better performance along a table edge. The check_sensors subroutine takes distance
measurements by recycling code from Program Listing 7.1: IR Distance Gage.

q Run and test Program Listing 7.2. Remember, always be ready to pick your Toddler up if it tries to run off

the table.

' Toddler Program 7.2: Drop-off Detection
' {$Stamp bs2} ' Stamp Directive.

' -----[I/O Definitions]--

TiltServo CON 13 ' Tilt servo on P12
StrideServo CON 12 ' Stride servo on P13

' -----[Constants]--

MoveDelay CON 25 ' in micrcoseconds

TiltStep CON 10 ' TiltServo step size

Experiment #7: Staying on the Table

Page Page 118118 • Advanced Robotics with the Toddler 1.0

RightTilt CON 620 ' Tilt limits
CenterTilt CON 750
LeftTilt CON 880

StrideStep CON 10 ' StrideServo step size

RightStride CON 650 ' Stride limits
CenterStride CON 750
LeftStride CON 850

' -----[Variables]--

FigureLoop VAR Nib
MoveLoop VAR Byte ' Loop for repeat movements
MoveLoopLimit VAR Byte

SubMoveLoop VAR Byte ' Loop for repeat submovements
SubMoveLoopLimit VAR Byte

Pulses VAR Word ' Pulse variable

CurrentTilt VAR Word
CurrentStride VAR Word
NewValue VAR Word

Dx VAR Pulses

Mx VAR Word
MxCurrent VAR Word

Sx VAR Word
SxCurrent VAR Word

' -----[Movement Support Codes]--
'
' The following state tables are lists of movement state numbers.
' A xx indicates the end of a list.
' These are used with the Movement routine.

TL CON 0
TC CON 1
TR CON 2

SL CON 3
SC CON 4
SR CON 5

xx CON 255

Experiment #7: Staying on the Table

Advanced Robotics with the Toddler 1.0 • Page Page 119119

' -----[Movement Value Tables]--
'
' These can be used with the Movement routine.
' The tables can contain Basic Movement Codes.
'
' Note: ALL movement tables must be in this section

LeftSemicircle DATA 7, bLeftTurn, bLeftTurn, bForward, xx
RightSemicircle DATA 7, bRightTurn, bRightTurn, bForward, xx

WalkForward3 DATA 3, bForward, xx
WalkForward8 DATA 8, bForward, xx

' -----[Basic Movement Codes]--
'
' Used in Movement tables.
' Referenced below using LOOKUP statement.

bFinish CON 0
bForward CON 1
bBackward CON 2
bLeftTurn CON 3
bRightTurn CON 4
bPivotLeft CON 5
bPivotRight CON 6

' -----[Basic Movement Tables]--
'
' These tables can contain Movement Support Codes.

BasicMovements CON Forward

Forward DATA 1, TR, SL, TL, SR, xx
Backward DATA 1, TR, SR, TL, SL, xx

LeftTurn DATA 1, TL, SR, TC, SL, TL, SR, TR, SL, xx
RightTurn DATA 1, TR, SL, TC, SR, TR, SL, TL, SR, xx

PivotLeft DATA 3, TL, SR, TC, SL, TR, SR, TC, SL, xx
PivotRight DATA 3, TR, SL, TC, SR, TL, SL, TC, SR, xx

Finish DATA 1, TR, SC, TC, xx

'----- Local Declarations --------------

 counter var nib ' For...next loop index variable.
 l_values var Mx ' Store R sensor vals for processing.
 r_values var Sx ' Store L sensor vals for processing.
 l_IR_freq var MxCurrent ' Stores L IR freqs from lookup table.
 r_IR_freq var SxCurrent ' Stores R IR freqs from lookup table.

Experiment #7: Staying on the Table

Page Page 120120 • Advanced Robotics with the Toddler 1.0

 left_pin con 10
 right_pin con 15

 left_in var in11
 right_in var in14

'----- Initialization ------------

 output left_pin ' Set all I/O lines sending freqout
 output right_pin ' signals to function as outputs.

'----- Initialization ------------

 output 2 ' Declare freqout lines to be outputs.
 freqout 2,500,3000 ' Signal program is starting/restarting.

 GOSUB ResetCC

'----- Main Routine --------------

main: ' Main routine

 ' The command "gosub check_sensors" sends the program to a subroutine that
 ' loads distance values into l_values and r_values. So, when the program returns
 ' from the check_sensors subroutine, the values are updated and ready for
 ' distance based decisions.

 gosub check_sensors

 ' The distances are checked for four different inequalities. Depending on the
 ' inequality that turns out to be true, the program either branches to the
 ' forward, left_turn, right_turn or backward navigation routine.
 ' The "3" value used below to test the boundary conditions may need to be
 ' changed depending upon the color of the walking surface and the angle of
 ' IR LEDs and detectors.

 boundary CON 2

 if l_values >= boundary and r_values >= boundary then go_forward
 if l_values >= boundary and r_values < boundary then left_turn
 if l_values < boundary and r_values >= boundary then right_turn
 if l_values < boundary and r_values < boundary then go_backward

goto main ' Repeat the process.

'----- Navigation Routines -------

 go_forward: ' Deliver a single forward pulse, then
 Mx = Forward
 GOSUB Movement

Experiment #7: Staying on the Table

Advanced Robotics with the Toddler 1.0 • Page Page 121121

 goto main ' go back to the main: label.

 left_turn: ' Deliver eight left pulses, then
 Mx = PivotLeft
 GOSUB Movement
 goto main ' go back to the main: label.

 right_turn: ' Deliver eight right pulses, then
 Mx = PivotRight
 GOSUB Movement
 goto main ' go back to the main: label.

 go_backward: ' Deliver eight backward pulses, then
 Mx = Backward
 GOSUB Movement
 goto main ' go back to the main: label.

'----- Subroutines ---------------

 ' The check sensors subroutine is a modified version of Program Listing 6.1
 ' without the debug Terminal display. Instead of displaying l_values and
 ' r_values, the main routine uses these values to decide which way to go.

 check_sensors:

 l_values = 0 ' Reset l_values and r_values to 0.
 r_values = 0

 ' Load sensor outputs into l_values and r_values using a for...next loop,
 ' a lookup table, and bit addressing.

 for counter = 0 to 4

 check_left_sensors:
 lookup counter,[37500,38250,39500,40500,41500],l_IR_freq
 freqout left_pin, 1, l_IR_freq
 l_values.lowbit(counter) = ~ left_in

 check_right_sensors:
 lookup counter,[37500,38250,39500,40500,41500],r_IR_freq
 freqout right_pin, 1, r_IR_freq
 r_values.lowbit(counter) = ~ right_in

 next

 ' Convert l_values and r_values from binary to ncd format.

 l_values = ncd l_values
 r_values = ncd r_values

 ' Now l_values and r_values each store a number between 0 and 5 corresponding
 ' to the zone the object is detected in. The program can now return to the
 ' part of the main routine that makes decisions based on these distance

Experiment #7: Staying on the Table

Page Page 122122 • Advanced Robotics with the Toddler 1.0

 ' measurements.

 return

' ----- Movement: Move feet using DATA table referenced by Mx -----
'
' Input: Mx = movement table index, table ends in xx
' or
' Mx = submovement table index, table ends in xx
'
' Note: All submovment tables come after the movment tables in this file.

Movement:
 IF Mx < BasicMovements THEN SetupMovement

 MxCurrent = Mx ' setup to use submovement table
 MoveLoopLimit = 1
 GOTO StartMovement

SetupMovement:
 READ Mx, MoveLoopLimit ' read movement table repeat count
 MxCurrent = Mx + 1

StartMovement:
 FOR MoveLoop = 1 to MoveLoopLimit
 Mx = MxCurrent ' Mx = start of movement table

 debug hex Mx, " Movement ", dec MoveLoop, " of ", dec MoveLoopLimit,cr

 IF Mx < BasicMovements THEN MovementLoop
 ' skip if movement table
 SxCurrent = Mx ' SxCurrent = submovement table index
 GOTO StartSubMovement ' enter middle of loop

MovementLoop:
 READ Mx, SxCurrent ' read next submovment byte
 Mx = Mx + 1
 IF SxCurrent = xx THEN MovementDone
 ' skip if end of list
 debug " ", hex SxCurrent, " movement",cr
 LOOKUP
SxCurrent,[Finish,Forward,Backward,LeftTurn,RightTurn,PivotLeft,PivotRight],SxCurrent
 ' lookup submovement table index
StartSubMovement: ' start executing submovement table
 READ SxCurrent, SubMoveLoopLimit
 ' read submovement table repeat count
 SxCurrent = SxCurrent + 1

 FOR SubMoveLoop = 1 to SubMoveLoopLimit
 Sx = SxCurrent

 debug " ", hex Sx, " submovement ", dec SubMoveLoop, " of ", dec SubMoveLoopLimit,cr

Experiment #7: Staying on the Table

Advanced Robotics with the Toddler 1.0 • Page Page 123123

SubMovementLoop:
 READ Sx, Dx ' read next submovent action
 Sx = Sx + 1

 IF Dx = xx THEN SubMovementDone
 ' skip if end of list
 GOSUB DoMovement ' execute movement
 GOTO SubMovementLoop

SubMovementDone:
 NEXT
 IF Mx < BasicMovements THEN MovementLoop
 ' exit if submovement table
MovementDone:
 NEXT
 RETURN

DoMovement:
 debug " ", dec Dx, " action",cr
 BRANCH Dx,[TiltLeft,TiltCenter,TiltRight,StrideLeft,StrideCenter,StrideRight]
 ' will fall through if invalid index
 RETURN

' ---- Movement routines can be called directly ----

TiltLeft:
 NewValue = LeftTilt
 GOTO MovementTilt

TiltCenter:
 NewValue = CenterTilt
 GOTO MovementTilt

TiltRight:
 NewValue = RightTilt

MovementTilt:
 FOR Pulses = CurrentTilt TO NewValue STEP TiltStep
 PULSOUT TiltServo, Pulses
 PULSOUT StrideServo, CurrentStride
 PAUSE MoveDelay
 NEXT

 CurrentTilt = NewValue
 RETURN

StrideLeft:
 NewValue = LeftStride
 GOTO MovementStride

Experiment #7: Staying on the Table

Page Page 124124 • Advanced Robotics with the Toddler 1.0

StrideCenter:
 NewValue = CenterStride
 GOTO MovementStride

StrideRight:
 NewValue = RightStride

MovementStride:
 FOR Pulses = CurrentStride TO NewValue STEP StrideStep
 PULSOUT TiltServo, CurrentTilt
 PULSOUT StrideServo, Pulses
 PAUSE MoveDelay
 NEXT

 CurrentStride = NewValue
 RETURN

' ----- Move feet to initial center position -----

ResetCC:
 CurrentTilt = CenterTilt
 CurrentStride = CenterStride

 FOR Pulses = 1 TO 100 STEP StrideStep
 PULSOUT TiltServo, CenterTilt
 PULSOUT StrideServo, CenterStride
 PAUSE MoveDelay
 NEXT

DoReturn:
RETURN

Aliased Variables

The Drop-off Detection program in Program 7.2 is the beginning of a rather large program in terms of DATA
memory. In fact, without a little PBASIC programming trick, the program will not compile. The trick is PBASIC’s
ability to alias a variable so it uses the storage space of another variable. This allows the program to run with
the 16 words of RAM space (actually 3 words are used for the BASIC Stamp’s PBASIC and interface pin
support).

The following code from Program Listing 7.2 shows how the aliasing is done.

'----- Local Declarations --------------

 counter var nib
 l_values var Mx
 r_values var Sx

Experiment #7: Staying on the Table

Advanced Robotics with the Toddler 1.0 • Page Page 125125

 l_IR_freq var MxCurrent
 r_IR_freq var SxCurrent

The first var definition is normal. It defines a nibble variable. The next four reuse different variables. They are
the same size as the aliased variables. The main requirement to keep in mind when using aliased variables is
that any variables sharing the same storage that these variables cannot be used at the same time. In other
words, do not try the following.

l_values = 1
Mx = 2

Aliasing is normally used because the original variable names do not work well with a new part of the program
or subroutine. PBasic has no concept of local variables so aliasing is required.

The BASIC Stamp’s IDE can present the memory map of the current program. This provides RAM and EEPROM
usage information. The memory map for the Toddler Program 7.2 is shown in Figure 7.4. It shows 5 bytes of
free RAM. Not much but enough. This inlcudes the use of four word aliased variables. If these variables were
not aliased then the program would need additional 8 bytes, 3 more than available.

Experiment #7: Staying on the Table

Page Page 126126 • Advanced Robotics with the Toddler 1.0

Figure 7.4: EEPROM Memory Map for Toddler Program 7.2

Aliasing should be used with great care. It is a significant source of problems when debugging a program. The
advantage of using this with the BASIC Stamp is that only a limited number of variables will be used in the
program so it is readily apparent where problems occur.

In this case, the initial set of variables is including Mx are used in the movement part of the program. Only the
Mx variable is used outside of the routine Movement routine and that is used to pass a parameter to the
routine. The aliased variables including l_IR_freq variable is used in the range finding routine. Since these
two routines do not call each other it is easy to isolate the two with respect to variables.

How the Drop-off Avoidance Program Works

Now that we have the aliasing issue out of the way we can move onto the main program. The first thing the
main routine does is call the check_sensors subroutine. Note that check_sensors is simply Program 7.1
with no Debug Terminal display placed in a subroutine. Instead of debugging the NCD values of l_detect and
r_detect, the values of these two variables are simply converted to NCD values using the statements:

Experiment #7: Staying on the Table

Advanced Robotics with the Toddler 1.0 • Page Page 127127

 l_values = ncd l_values

and
 r_values = ncd r_values

After calling the check_sensors subroutine, l_values and r_values are numbers between “0” and “5.”
These values are used instead of the “1” and “0” values used in the whiskers program. After the program
returns from the check_sensors subroutine, l_values and r_values are checked against the
benchmarks distance indicating the edge of the table has been detected.

boundary CON 2

 if l_values >= boundary and r_values >= boundary then go_forward
 if l_values >= boundary and r_values < boundary then left_turn
 if l_values < boundary and r_values >= boundary then right_turn
 if l_values < boundary and r_values < boundary then go_backward

The routines then load the Mx variable with the index of the appropriate table. The Movement routine then
uses the table to initiate the Toddler’s leg movements. The boundary value is the distance boundary
condition. This may need to be changed depending upon the color of the surface the Toddler is walking on. It
must be set so that the Toddler reliably sees the table when moving forward.

The angle at which the IR LEDs and sensors can be tilted downward is limited so a low boundary value is
typical. One alternative to having a value of 1 or 2 is to adjust the range finding frequencies so that the
midrange values are sensing distances farther away. The other alternative is to mount the IR LEDs and sensors
closer or on to the Toddler’s feet.

The current configuration with the IR KEDs and sensors mounted on the Toddler’s circuit board does lead to a
long rang recognition of the edge of the table so the Toddler should not get much closer than a foot from the
edge. This means the Toddler needs a relatively large table with a white or light colored surface to walk on.

The Toddler will also attempt to walk along the edge of the table although this is not explicitly built into the
program. In theory, if the Toddler walks perpendicular to the edge it will walk to the edge, back up, walk
forward and repeat this indefinitely. In practice, this does not occur for two reasons. The first is that the
Toddler’s movement is not perfectly repeatable. As it moves forward and backwards, the Toddler turns
slightly to the one side or the other. Eventually the IR sensors will detect the difference and the Toddler will
turn instead of backing up or moving forward.

Experiment #7: Staying on the Table

Page Page 128128 • Advanced Robotics with the Toddler 1.0

The sensors themselves are another area that will cause the Toddler to turn parallel to the edge of the able.
This will occur if one sensor is more sensitive than the other. Of course, this difference will work in one
direction and may cause the Toddler to take an extra step forward if the detection is handled by the other
side. This will not cause the Toddler to walk off the table though since it tries to stay so far away from the
edge. An extra step or two will not cause a problem.

One area that can be a problem especially when the IR LEDs and sensors are pointed forward is that the
Toddler will have limited peripheral vision. It is possible for the Toddler to turn parallel to an edge and drift
towards the edge. In theory, the sensor on that side should detect the edge and the Toddler will turn away
from the edge. This problem occurs more often when the edge of the table is irregular. Aiming the IR LEDs and
sensors outward slightly can help eliminate the problem if it occurs.

Activity #3: Toddler Shadow Walker

For one Toddler to follow another, the Toddler that follows, a.k.a. the shadow walker, has to know how far the
lead vehicle is ahead. If the shadow vehicle is lagging behind, it has to detect this and speed up. If the shadow
vehicle is too close to the lead vehicle, it has to detect this as well and slow down. If it’s the right distance, it
can wait until the measurements indicate it’s too far or too close again.

Unlike the Toddler’s sibling the Boe-Bot, the Toddler moves in discrete steps, not small increments using
wheels. Whereas the Boe-Bot uses calculated proportional control, the Toddler must be a bit more discrete. It
is possible to take proportional steps but the accuracy of the Toddler’s movements minimizes the effect of
minor changes to movements. On the other hand, the Boe-Bot can move one or both of its wheels a fraction
of an inch in subsecond times. A Toddler step can take as long as a second.

As it turns out, the Toddler’s IR range finders work well for tracking another Toddler. The range results are in
discrete values and the number is not large. If it were, then the values would have to be converted down to
this level of gradation that is manageable. It is then simply a matter of choosing the appropriate step type and
magnitude.

The Toddler is a difficult target for another Toddler to locate with its many facets. To improve the detection
using the IR sensors, the target Toddler should have a white box placed around it. This can be made of paper
or cardboard and it can be affixed to the Toddler’s frame using tape or other means. The box should start
about where the base of the Toddler’s central box containing the servos and can extend to just above the
circuit board. The IR sensors can be angled down slightly so they will detect the central portion of the box at a
distance of about a foot. The box should not impede the foot movement or the servors and it can extend out
from the Toddler by as much as a few inches. It should not be too heavy or large so as to significantly change
the center of gravity forcing adjustments in walking behavior.

Experiment #7: Staying on the Table

Advanced Robotics with the Toddler 1.0 • Page Page 129129

Although these changes are not absolutely required for one Toddler to follow another, they will improve the
overall system performance. Also, the roaming area needs to be free of obstacles and walls otherwise the
Toddler that will be following may detect these obstacles instead. There is no checking in the program to
determine if the object detected is remaining stationary although it is possible to modify the program to do
so.

Programming the Toddler Shadow Walker

Program Listing 7.3 uses additional branch and lookup statements to adjust the Toddler’s position based on
the range finder results. The movements are designed to aim the Toddler at the object it is following, usually
another Toddler, and to keep that object at a discrete distance.

q Run Program Listing 7.3.

q Point the Toddler at an 8 ½ × 11” sheet of paper held in front of it as though it’s a wall-obstacle. The

Toddler should maintain a fixed distance between itself and the sheet of paper.

q Try moving the paper so it rotates about the Toddler. The Toddler should rotate with it.

q Try using the sheet of paper to lead the Toddler around. The Toddler should follow it.

Experiment #7: Staying on the Table

Page Page 130130 • Advanced Robotics with the Toddler 1.0

' Toddler Program 7.3: Shadow Walker
' {$Stamp bs2} ' Stamp Directive.

' -----[I/O Definitions]--

TiltServo CON 13 ' Tilt servo on P12
StrideServo CON 12 ' Stride servo on P13

' -----[Constants]--

MoveDelay CON 25 ' in micrcoseconds

TiltStep CON 20 ' TiltServo step size

RightTilt CON 630 ' Tilt limits
CenterTilt CON 750
LeftTilt CON 870

StrideStep CON 20 ' StrideServo step size

RightStride CON 650 ' Stride limits
CenterStride CON 750
LeftStride CON 850

' -----[Variables]--

FigureLoop VAR Nib
MoveLoop VAR Byte ' Loop for repeat movements
MoveLoopLimit VAR Byte

SubMoveLoop VAR Byte ' Loop for repeat submovements
SubMoveLoopLimit VAR Byte

Pulses VAR Word ' Pulse variable

CurrentTilt VAR Word
CurrentStride VAR Word
NewValue VAR Word

Dx VAR Pulses

Mx VAR Word
MxCurrent VAR Word

Sx VAR Word
SxCurrent VAR Word

' -----[Movement Support Codes]--

Experiment #7: Staying on the Table

Advanced Robotics with the Toddler 1.0 • Page Page 131131

'
' The following state tables are lists of movement state numbers.
' A xx indicates the end of a list.
' These are used with the Movement routine.

TL CON 0
TC CON 1
TR CON 2

SL CON 3
SC CON 4
SR CON 5

xx CON 255

' -----[Movement Value Tables]--
'
' These can be used with the Movement routine.
' The tables can contain Basic Movement Codes.
'
' Note: ALL movement tables must be in this section

TurnLeftForward DATA 1, bLeftTurn, bForward, xx
TurnRightForward DATA 1, bRightTurn, bForward, xx

PivotLeftForward DATA 1, bPivotLeft, bForward, xx
PivotRightForward DATA 1, bPivotRight, bForward, xx

BackwardPivotLeft DATA 1, bBackward, bPivotLeft, xx
BackwardPivotRight DATA 1, bBackward, bPivotRight, xx

Forward2 DATA 2, bForward, xx
Backward2 DATA 2, bBackward, xx

' -----[Basic Movement Codes]--
'
' Used in Movement tables.
' Referenced below using LOOKUP statement.

bFinish CON 0
bForward CON 1
bBackward CON 2
bLeftTurn CON 3
bRightTurn CON 4
bPivotLeft CON 5
bPivotRight CON 6

' -----[Basic Movement Tables]--
'
' These tables can contain Movement Support Codes.

Experiment #7: Staying on the Table

Page Page 132132 • Advanced Robotics with the Toddler 1.0

BasicMovements CON Forward

Nop DATA 1, xx

Forward DATA 1, TR, SL, TL, SR, xx
Backward DATA 1, TR, SR, TL, SL, xx

LeftTurn DATA 1, TL, SR, TC, SL, TL, SR, TR, SL, xx
RightTurn DATA 1, TR, SL, TC, SR, TR, SL, TL, SR, xx

PivotLeft DATA 3, TL, SR, TC, SL, TR, SR, TC, SL, xx
PivotRight DATA 3, TR, SL, TC, SR, TL, SL, TC, SR, xx

Finish DATA 1, TR, SC, TC, xx

'----- Movement LOOKUP entries --------------
'
' These constants should reference the appropriate movement table.
' The constant syntax is lxry where x and y indicate the range from the
' left and right sensor respectively. A zero value indicates nothing
' is within range while a 5 indicates an object is within inches.
' In general, a 3 will be the closest desirable distance.

l0r0 CON Forward
l0r1 CON TurnRightForward
l0r2 CON PivotRightForward
l0r3 CON PivotRight
l0r4 CON RightTurn
l0r5 CON BackwardPivotRight

l1r0 CON PivotLeftForward
l1r1 CON Forward
l1r2 CON PivotRightForward
l1r3 CON PivotRight
l1r4 CON PivotRight
l1r5 CON BackwardPivotRight

l2r0 CON TurnLeftForward
l2r1 CON TurnLeftForward
l2r2 CON Forward
l2r3 CON Nop
l2r4 CON PivotRight
l2r5 CON BackwardPivotRight

l3r0 CON PivotLeft
l3r1 CON PivotLeft
l3r2 CON Nop
l3r3 CON Nop
l3r4 CON Nop
l3r5 CON BackwardPivotRight

l4r0 CON BackwardPivotLeft

Experiment #7: Staying on the Table

Advanced Robotics with the Toddler 1.0 • Page Page 133133

l4r1 CON BackwardPivotLeft
l4r2 CON PivotLeft
l4r3 CON Nop
l4r4 CON Backward
l4r5 CON Backward

l5r0 CON BackwardPivotLeft
l5r1 CON BackwardPivotLeft
l5r2 CON BackwardPivotLeft
l5r3 CON BackwardPivotLeft
l5r4 CON Backward
l5r5 CON Backward

'----- Local Declarations --------------

 counter var nib ' For...next loop index variable.
 l_values var Mx ' Store R sensor vals for processing.
 r_values var Sx ' Store L sensor vals for processing.
 l_IR_freq var MxCurrent ' Stores L IR freqs from lookup table.
 r_IR_freq var SxCurrent ' Stores R IR freqs from lookup table.

 left_pin con 10
 right_pin con 15

 left_in var in11
 right_in var in14

'----- Initialization ------------

 output 2 ' Declare outputs.
 output left_pin
 output right_pin

 freqout 2,500,3000 ' Beep at startup.

 GOSUB ResetCC

'----- Main Routine --------------

main: ' Main routine

 gosub check_sensors ' Get distance values for each sensor

 'debug "l",dec l_values,"r", dec r_values,cr

 Branch l_values,[left0,left1,left2,left3,left4,left5]

 left0:
 LOOKUP r_values,[l0r0,l0r1,l0r2,l0r3,l0r4,l0r5],Mx
 GOTO main_movement

Experiment #7: Staying on the Table

Page Page 134134 • Advanced Robotics with the Toddler 1.0

 left1:
 LOOKUP r_values,[l1r0,l1r1,l1r2,l1r3,l1r4,l1r5],Mx
 GOTO main_movement

 left2:
 LOOKUP r_values,[l2r0,l2r1,l2r2,l2r3,l2r4,l2r5],Mx
 GOTO main_movement

 left3:
 LOOKUP r_values,[l3r0,l3r1,l3r2,l3r3,l3r4,l3r5],Mx
 GOTO main_movement

 left4:
 LOOKUP r_values,[l4r0,l4r1,l4r2,l4r3,l4r4,l4r5],Mx
 GOTO main_movement

 left5:
 LOOKUP r_values,[l5r0,l5r1,l5r2,l5r3,l5r4,l5r5],Mx

main_movement:
 GOSUB Movement
 GOTO main ' Infinite loop.

'----- Subroutine(s) -------------

check_sensors:

 l_values = 0 ' Set distances to 0.
 r_values = 0
 ' Take 5 measurements for distance at each IR pair. If you fine tuned your
 ' frequencies in Activity #2, insert them in the lookup tables.

 for counter = 0 to 4
 check_left_sensors:
 lookup counter,[37500,38250,39500,40500,41000],l_IR_freq
 freqout left_pin,1,l_IR_freq
 l_values.lowbit(counter) = ~left_in

 check_right_sensors:
 lookup counter,[37500,38250,39500,40500,41000],r_IR_freq
 freqout right_pin,1,r_IR_freq
 r_values.lowbit(counter) = ~right_in

 next

 l_values = ncd l_values ' Value (0 to 5) for distance depending on MSB.
 r_values = ncd r_values

return

' ----- Movement: Move feet using DATA table referenced by Mx -----
'

Experiment #7: Staying on the Table

Advanced Robotics with the Toddler 1.0 • Page Page 135135

' Input: Mx = movement table index, table ends in xx
' or
' Mx = submovement table index, table ends in xx
'
' Note: All submovment tables come after the movment tables in this file.

Movement:
 IF Mx < BasicMovements THEN SetupMovement

 MxCurrent = Mx ' setup to use submovement table
 MoveLoopLimit = 1
 GOTO StartMovement

SetupMovement:
 READ Mx, MoveLoopLimit ' read movement table repeat count
 MxCurrent = Mx + 1

StartMovement:
 FOR MoveLoop = 1 to MoveLoopLimit
 Mx = MxCurrent ' Mx = start of movement table

 'debug hex Mx, " Movement ", dec MoveLoop, " of ", dec MoveLoopLimit,cr

 IF Mx < BasicMovements THEN MovementLoop
 ' skip if movement table
 SxCurrent = Mx ' SxCurrent = submovement table index
 GOTO StartSubMovement ' enter middle of loop

MovementLoop:
 READ Mx, SxCurrent ' read next submovment byte
 Mx = Mx + 1
 IF SxCurrent = xx THEN MovementDone
 ' skip if end of list
 'debug " ", hex SxCurrent, " movement",cr
 LOOKUP
SxCurrent,[Finish,Forward,Backward,LeftTurn,RightTurn,PivotLeft,PivotRight],SxCurrent
 ' lookup submovement table index
StartSubMovement: ' start executing submovement table
 READ SxCurrent, SubMoveLoopLimit
 ' read submovement table repeat count
 SxCurrent = SxCurrent + 1

 FOR SubMoveLoop = 1 to SubMoveLoopLimit
 Sx = SxCurrent

 'debug " ", hex Sx, " submovement ", dec SubMoveLoop, " of ", dec SubMoveLoopLimit,cr

SubMovementLoop:
 READ Sx, Dx ' read next submovent action
 Sx = Sx + 1

 IF Dx = xx THEN SubMovementDone
 ' skip if end of list

Experiment #7: Staying on the Table

Page Page 136136 • Advanced Robotics with the Toddler 1.0

 GOSUB DoMovement ' execute movement
 GOTO SubMovementLoop

SubMovementDone:
 NEXT
 IF Mx < BasicMovements THEN MovementLoop
 ' exit if submovement table
MovementDone:
 NEXT
 RETURN

DoMovement:
 'debug " ", dec Dx, " action",cr
 BRANCH Dx,[TiltLeft,TiltCenter,TiltRight,StrideLeft,StrideCenter,StrideRight]
 ' will fall through if invalid index
 RETURN

' ---- Movement routines can be called directly ----

TiltLeft:
 NewValue = LeftTilt
 GOTO MovementTilt

TiltCenter:
 NewValue = CenterTilt
 GOTO MovementTilt

TiltRight:
 NewValue = RightTilt

MovementTilt:
 FOR Pulses = CurrentTilt TO NewValue STEP TiltStep
 PULSOUT TiltServo, Pulses
 PULSOUT StrideServo, CurrentStride
 PAUSE MoveDelay
 NEXT

 CurrentTilt = NewValue
 RETURN

StrideLeft:
 NewValue = LeftStride
 GOTO MovementStride

StrideCenter:
 NewValue = CenterStride
 GOTO MovementStride

StrideRight:
 NewValue = RightStride

Experiment #7: Staying on the Table

Advanced Robotics with the Toddler 1.0 • Page Page 137137

MovementStride:
 FOR Pulses = CurrentStride TO NewValue STEP StrideStep
 PULSOUT TiltServo, CurrentTilt
 PULSOUT StrideServo, Pulses
 PAUSE MoveDelay
 NEXT

 CurrentStride = NewValue
 RETURN

' ----- Move feet to initial center position -----

ResetCC:
 CurrentTilt = CenterTilt
 CurrentStride = CenterStride

 FOR Pulses = 1 TO 100 STEP StrideStep
 PULSOUT TiltServo, CenterTilt
 PULSOUT StrideServo, CenterStride
 PAUSE MoveDelay
 NEXT

DoReturn:
RETURN

How the Shadow Walker Program Works

The first thing the main routine does is call the check_sensors subroutine. After the check_sensors
subroutine is finished, l_values and r_values each contain a number corresponding to the zone in which
an object was detected for both the left and right IR pairs.

main:

 gosub check_sensors

The next line of code jumps to one of many LOOKUP statements. The BRANCH statement uses the status of the
left IR sensor while the LOOKUP statements use the status of the right IR sensor. These set the Mx variable
with the table index for the movement to be performed by the Movement routine.

Branch l_values,[left0,left1,left2,left3,left4,left5]

 left0:
 LOOKUP r_values,[l0r0,l0r1,l0r2,l0r3,l0r4,l0r5],Mx
 GOTO main_movement

 left1:

Experiment #7: Staying on the Table

Page Page 138138 • Advanced Robotics with the Toddler 1.0

 LOOKUP r_values,[l1r0,l1r1,l1r2,l1r3,l1r4,l1r5],Mx
 GOTO main_movement

 left2:
 LOOKUP r_values,[l2r0,l2r1,l2r2,l2r3,l2r4,l2r5],Mx
 GOTO main_movement

 left3:
 LOOKUP r_values,[l3r0,l3r1,l3r2,l3r3,l3r4,l3r5],Mx
 GOTO main_movement

 left4:
 LOOKUP r_values,[l4r0,l4r1,l4r2,l4r3,l4r4,l4r5],Mx
 GOTO main_movement

 left5:
 LOOKUP r_values,[l5r0,l5r1,l5r2,l5r3,l5r4,l5r5],Mx

main_movement:
 GOSUB Movement

The values used in the LOOKUP Statement are defined near the start of the program using CON constant
definitions. While it is possible to put these values in the LOOKUP statement, this makes the statements long. It
also makes it difficult to see what action is performed in a particular state. The constant definitions provide a
way to do this. It is now easy to correlate a particular state such as l3r3 with a particular movement, in this
case a nop or no movement. Likewise, l5r5 indicates that the Toddler is immediately in front of an obstacle
and l0r0 indicates the Toddler has not located an obstacle within its range.

Program control is returned to the main: label after the movement has been performed, and the loop
repeats itself.

goto main

Experiment #7: Staying on the Table

Advanced Robotics with the Toddler 1.0 • Page Page 139139

Figure 7.5 shows a lead Toddler followed by a shadow Toddler. The lead Toddler could run any of the prior
programs provided the speed is slower (increase the PAUSE values or decrease the Step values) and the
shadow Toddler is running Program Listing 7.3: Shadow Vehicle. Proportional control makes the shadow
Toddler a very faithful follower. One lead Toddler can string along a chain of 2 or 3 Toddlers. Just add a 4’ x 4”
paper to the lead Toddler’s backside.

Figure 7.5: Lead Toddler and Shadow Toddler

q If you are part of a class, mount paper panel on the back of the lead Toddler as shown in Figure 7.5.

q If you are not part of a class (and only have one Toddler) the shadow vehicle will follow a piece of paper

or your hand just as well as it follows a lead Toddler.

Challenges

Experiment #7: Staying on the Table

Page Page 140140 • Advanced Robotics with the Toddler 1.0

q The Shadow Toddler should be running Program Listing 7.3 without any modifications.

q With both Toddlers running their respective programs, place the shadow Toddler behind the lead Toddler.

The shadow Toddler follows at a fixed distance, so long as it is not distracted by another object such as a
hand or a nearby wall.

Appendix A: Parts Listing and Sources

Advanced Robotics with the Toddler 1.0 • Page Page 141141

Appendix A:
Parts Listing
and Sources

All parts used in the Toddler kit are available individually from the
Parallax Component Shop (www.parallaxinc.com/componentshop). If
you can’t readily find the component you are looking for in the
Component Shop enter the name of it in the on-line search box using
the stock code.

The Toddler Kit comes in two flavors:

• Gold Anodized Toddler Kit - 27310
• Blue Anodized Toddler Kit - 27311

Parallax Part # Description Qty/Kit
Electronic Components
150-02210 220 Ohm resistors ¼ watt 5% tolerance 4
200-01040 0.1 uF capacitor 2
200-01031 0.01 uF capacitor 2
350-00001 Green LED 2
350-00007 Yellow LED 2
350-00009 Photoresistors 2
350-00014 Infrared detector 4
350-00017 Infrared LED w/ heat shrink tubing 4
550-00020 Toddler Printed Circuit Board with BASIC Stamp 2 1
753-00001 Battery Pack with Tinned Wires 1
800-00016 Jumper wires (bag of 10) 1
900-00001 Speaker 1
900-00010 Parallax Toddler Servo (Toddler Mini F BB) 2
Metal Parts
720-00001 Toddler Top Plate - Gold Anodized 1
720-00002 Toddler Top Plate - Blue Anodized 1
720-00003 Toddler Body - Gold Anodized 1
720-00004 Toddler Body - Blue Anodized 1
720-00005 Toddler Foot - Left Gold Anodized 1
720-00006 Toddler Foot - Left Blue Anodized 1
720-00007 Toddler Foot - Right Gold Anodized 1
720-00008 Toddler Foot - Right Blue Anodized 1
720-00009 Toddler Ankle 2
720-00010 Toddler Legs 4

Appendix A: Parts Listing and Sources

Page Page 142142 • Advanced Robotics with the Toddler 1.0

Hardware
700-00002 3/8" 4/40 machine screw – panhead 10
700-00003 4/40 nut 14
700-00016 3/8” 4/40 machine screw – flathead 6
700-00028 1/4" 4/40 machine screw – panhead 12
700-00060 1” 4/40 aluminum standoffs female/female 4
710-00100 3/16” long 4/40 socket head cap screw – nylon 4
712-00001 1/2" outer diameter flat round plastic washer 4
725-00002 3” long 3/16" outer diamter brass rod 2
725-00003 1/16" ball joints with 2/56 thread (nut, ball joint, cup) 4
725-00004 5.4" long brass rod with 2/56 0.5" thread on each end 2
725-00005 3/32" hex L-key 1
725-00006 3/32" E/Z adjust plastic horn bracket for 4-40 screw 1
725-00007 .072” brass servo horn connector (brass fitting, rubber holder

and small screw) – in a package 1
725-00008 .072” diameter “L” shaped 2” wire 2
726-00001 3/16" collars (4), set screw and wrench 1
Miscellaneous
27218 BASIC Stamp Manual Version 2.0c 1
122-00001 Advanced Robotics with the Toddler Manual 1
123-00001 Toddler Printed Insert 1
800-00003 Serial cable 1
900-00007 The Plastic Box 1
700-00064 Parallax Screwdriver 1

Appendix B: Toddler Printed Circuit Board Schematic

Advanced Robotics with the Toddler 1.0 • Page Page 143143

Appendix B:
Toddler Revision B Printed Circuit Board Schematic

Appendix B: Toddler Printed Circuit Board Schematic

Page Page 144144 • Advanced Robotics with the Toddler 1.0

