Advanced Robotics with the Toddler

Student Guide

Version 1.0

Note regarding the accuracy of this text:
Many efforts were taken to ensure the accuracy of this text and the
experiments, but the potential for errors still exists. If you find
errors or any subject requiring additional clarification, please report
this to stampsinclass@parallaxinc.com so we can continue to
improve the quality of our documentation.

PAALAX 7

Warranty

Parallax warrants its products against defects in materials and workmanship for a period of 90 days. If you discover a defect, Parallax
will, at its option, repair, replace, or refund the purchase price. Simply call for a Return Merchandise Authorization (RMA) number,
write the number on the outside of the box and send it back to Parallax. Please include your name, telephone number, shipping
address, and a description of the problem. We will return your product, or its replacement, using the same shipping method used to
ship the product to Parallax.

14-Day Money Back Guarantee

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a full refund. Parallax
will refund the purchase price of the product, excluding shipping / handling costs. This does not apply if the product has been altered
or damaged.

Copyrights and Trademarks

This documentation is Copyright 2002 by Parallax, Inc. Toddler is a trademark of Parallax, pending registration. BASIC Stamp is a
registered trademark of Parallax, Inc. If you decide to use the name BASIC Stamp on your web page or in printed material, you must
state: "BASIC Stamp is a registered trademark of Parallax, Inc." Other brand and product names are trademarks or registered
trademarks of their respective holders.

Disclaimer of Liability

Parallax, Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or under any
legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, and any costs or
recovering, reprogramming, or reproducing any data stored in or used with Parallax products. Parallax is also not responsible for any
personal damage, including that to life and health, resulting from use of any of our products. You take full responsibility for your BASIC
Stamp application, no matter how life threatening it may be.

Internet Access

We maintain Internet systems for your use. These may be used to obtain software, communicate with members of Parallax, and
communicate with other customers. Access information is shown below:

E-mail: stampsinclass@parallaxinc.com
Web: http://www.parallaxinc.com and http://www.stampsinclass.com

Internet BASIC Stamp Discussion List

We maintain two e-mail discussion lists for people interested in BASIC Stamps. The “BASIC Stamp” list server includes engineers,
hobbyists, and enthusiasts. The list works like this: lots of people subscribe to the list, and then all questions and answers to the list are
distributed to all subscribers. It's a fun, fast, and free way to discuss BASIC Stamp issues and get answers to technical questions. This
list generates about 40 messages per day. Subscribe at www.yahoogroups.com under the group name “basicstamps”.

The Stamps in Class list is for students and educators who wish to share educational ideas. This list generates about five messages per
day. Subscribe at www.yahoogroups.com under the name “stampsinclass”.

Contents

Table of Contents

e =] U0l OO TSPV P PR PPPRPRPPRPTIN i
RECOGNITIONS ..vovovvevveeeveesseeceessseesesss e seessseeses s 8888888888888 iii
AudienCe aNd TEACNEI'S GUITESc.vvuuurrreriisseeeesissssesssss s s v
COPYIIGNT AN REPIOUUCTIONoovvvverrreieeieeeesiseesessssesssssseesss st sss s s v

Experiment #1: Assembling the Toddler RODOT.............ooiiiiiiii e 1
The Newest Member Of the FAMIIY...... ...t sss s sss s ssss s sss e 1
LE'S BUII T TOAAIET.......ovvveevirrveiiireiiisessssis s 1

TOOIS REGUITEA........ovveireeeieriee et ee st 1
A Note About Parts in the TOAAIET Kit...........cccuurirriirisesssissssesssssssssessssssssesssssssssssssssssssssssssnns 2
CRAIEINGES.......ooeveeire ettt s8R 18

Experiment #2: Taking YOUI FIFST STEPSoiiiiie ittt ettt sttt e e e 19

SEIVO CONEIOI BASICSvvvvvvssssaeeeeissseesssssss s 19
HOW 8 SEIVO WOTKS........ooooerrveissieessessssesssssss s 19
Time Measurement and VOILAGE LEVEISicreeceiisneeeesessssssessssssesssssssesssssssssssssssssssssssssssssssssssnneess 19

Many Ways 10 MOVE The TOUUIEK ... ses e ssss s ssss st sss s ssss s s sssssssssss e 22
APPIOACH H1: BIULE FOTCE.....vvoveevevieeceee e sesss sttt s 22
APPIOACH #2: DALA TADIESovooveevecee et 22
APProach #3: StALE TFANSITIONS.........ovvveerreerieereeese et sses s sss et s s 22

TNEOTY OF OPEBIALION ... vvvvveevetieieeieeeeessee s e sss s e8RS 23
Activity #1: BaSiC Walking MOVEMENTS...........cereerreerinneeessmnesssssssesssssssessssssssssssssesssssssesssssssssssssssesssssnssssssssneess 26
Activity #2: WalKing BACKWAITScc.ucrreerieieeinereeinsscesissessssssse s ssesssnssssssssneess 35
Activity #3: Using a DATA Table t0 STOre MOVEMENTSoomrverrreeeeesnsessssessesssessssssssssssssesssssssssssssneess 39
Activity #4: Using State Transitions FOr MOVEMENTS............orerreeeresnnessssesssssesssssssssssssssessssssssssssssneess 43

CRIEIEINGESoovvvevveeeeeie e eesessse st et 50

EXperiment #3: TUFNING AFOUNGoouiiiie ettt ettt et e e sste e e stte e et e e snae e e seeeeeneeas 51

ACEIVITY #1: MBKING 8 TUIT e vveevveetieeeeeiee st ssssssesesssses s ssss s 51
ACHIVITY #2: DIFFEIEINT TUIMS ..covoooeeveieeieesee et ssesse st ssss e e 56

CRIEIEINGESoov ettt eeesse st s8R 8RR 57

Experiment #4: Coordinated WalKINgcooeee it 59

ACEIVILY #1: WHICH TADIE?.......coooooeeeei ettt s 59
Activity #2: Figure 8S and SQUAIE DANCING..........ccurreermeresmmreesessnnesssssseessssssssssssssssssssssessssssesssssssessssssssssssssneess 62

CRIEIEINGESoov ettt eeesse st s8R 8RR 70

Experiment #5: FOHOWING LIGNT ...ttt seae e 71
Activity #1: Building and TeSting PROTOSENSITIVE EYESvveveerreeireeinessesnsesssssesssssssssssssssssssssssssssssssssnnns 72

Programming t0 Measure the RESISTANCEccouwerrieeiesinnesesssseessssssessssssssssssssesssssssssssssssssssssssssssssesseses 74
How the PhotoreSiStor DISPIAY WOTKSocivreeeeieenesiesissessessssssesssessnsesseses 75

Contents

YOUE TUITY . evvttseeessseesssse s s8R 76
ACEIVITY #2: A LIGIT COMPASS .vvvvvevverseeeeessmeesesssseesesssseessssssessssssseesss s ssssssessss s sssssssessssssssssssssssesssssssssssssssesssssssssssssnnse 77
Programming the Toddler t0 POINT At the LIGNT ... ssssssssssssesssssssssssssees 77
HOW the LIght COMPESS WOTKScreveeiereerineeieeineseesisesssssssesssssssssssssssessssssssssssssssssss s ssssssssssssssesssssnssssssssneees 83
YOUE TUITY . evvttsaeeessseesssse s s8R 84
ActiVity #3: FOHOWING THE LIGNTovoveieeeieeciesee s sssss st s sss st sss s e sssssssssss e 84
How the Light FOIOWET Program WOFKS ... sesssesssssssessssssssssssssssssssssssssssesssssnssssssssnseess 90
CRIAIEINGES.......eoooeeeevs et e se e s8££ 88888 92
Experiment #6: Object Avoidance With INFrared ..o 93
Using Infrared Headlights t0 SEe the ROBM..........ccooewrceieie et sssssssssssssssssssns 93
INFFArEA HEAUNGNTS. ...ttt st e 93

TRE FIEUOUL THICK. ... vvevveeieesseeeesiseeseessseesess s eses s s s s8R 94
Activity #1: Building and Testing the New IR TranSmitter/DEtECION..........covvvemerernerreneeresssessessesssssssessess 95
Programming the Real-Life Situation that Gets EMUlated..........coo..oeireieieiseeessseseeseeseesee 97
How the IR Pairs Display Program WOTKS ... ssssssessssssssssssssssssssssssssssssssssssnneess 99
Activity #2: Object Detection and AVOITANCE.ocuwwerreerereeressessessessssssesssssse st ssss st ssssssssssssses 100
REAI-TIME IR NVIJATION ...ovvvverreeierseeiesieeeeesseeses s essss s sss s sss s sss st 100
How IR Roaming by NUMDBErs in REal-TIMe WOIKSccc.crriieieceenessesissesessssssesssessssssesssssssesssssseess 106
CRAIEINGES.......eoooeeei ettt s 888888 108
Experiment #7: Staying 0N the Table.........ooo i 109
WRAL'S @ FIEOUEBNCY SWEEP?......oueeverireeieesmseeeessseessssssseesssssssssss s ssssssses st ssss s sss s sssssssssss s sssssssesssssssssssssnsesseses 109
Activity #1: TESHING the FrEQUENCY SWEBP w.....crvverrrerernneeesieeessssseesssssesssssssssssssssssssssssesssssssssssssssssssssssssssasessssns 109
Programming the IR DISTANCE GAYE........uurwerreeereesneesessseessssssesssssessssssessssssssssssssssssssssssssssssessssssssssssssneees 110
How the Distance Gage Program WOTKS...........c..eerrieeeerenesssssessssssesssssssssssssssssssssssssssssesssssnssssssssaseess 113
YOUE TUITL . .cvvttsaeeeessseess e esss s s8R R0 115
ACLIVILY #2: THE DIOP-0TT DELECTION ...t e sss s s sss st s s 116
Programming fOr Drop-Off DELECTION.ouivereeeeeiieeeeeseesss e sssss st sss s sss st ssssssssneees 117
ATTASEA VAITADIES.........ooooevveeesseeeseissessssess s 124
How the Drop-off Avoidance Program WOTKSreesnssssssesssssssssssssesssssssssssssnssssssssaseess 126
Activity #3: TOAdIEr SNAAOW WEIKET ... sesssesssssssesssssssssssss st sssssssssssssssssssssssssses 128
Programming the Toddler SNAdOW WEIKET ... eesessssssessssssssssssssssssssssssssssssssssnseess 129
How the Shadow Walker Program WOTKS ... sessissssssssssssssssssssssssssssssesssssnssssssssaseess 137
CRAIEINGES.......eooo et et 88 139
Appendix A: Parts LiStING @Na SOUFCESocvuiiiiiee it e ettt et stee e e et stee e st e e snae e e seeeeeneeas 141
Appendix B: Toddler Printed Circuit Board SChematiCcocvviiieiiiiie e 143

Page ii

Preface

Preface

Walking robots remain largely unexplored in the area of hobby and education. The limitations include
handling diverse terrain including stairs, more difficult programming algorithms and feedback, and generally
more complex mechanical designs. This may be one of the reason most of our robots have wheels. However,
people have a natural tendency to appreciate a walking robot: they seem more like human beings; they offer
more entertainment value since they're fun to watch; and to make a biped robot walk successfully is a
challenge worthy to pursue the concept.

The Toddler robot simplifies the walking robot concept. While the Toddler certainly won't be caring
for the elderly, vacuuming the house or driving you to the store, it will provide a first exposure to the concept
of a programmable biped. Two servos will prove to be quite limiting if you master this robot, but along the
way you'll discover the complexities and rewards associated with learning to program a walker. Walking
robots introduce embedded control in a positive, fun and friendly way.

The programming of Toddler is not trivial. When you are done with the Toddler experiments you'll be
a much better BASIC Stamp programmer. We'd suggest that you first try the Boe-Bot projects as a
prerequisite. If this isn't possible, take your time to absorb and understand how the program structures work
and how PBASIC is utilized. Keep your BASIC Stamp Manual Version 2.0 handy to look up PBASIC syntax that
isn’t obviously understood. Seeing examples in a non-robotic use is often helpful.

If you need help, call or e-mail Parallax for technical support. We'd be pleased to help get your
Toddler walking the way you want it to.

Recognitions

Although Parallax designed the Toddler, we recognize that the first time we have seen the two-servo
concept employed for a walking robot is British robotics designer David Buckley's “Big Foot”. Though the basic
concept is simple, our research shows that Mr. Buckley created the ingenious use of two servos for a walker.
Big Foot is a plywood kit available through Milford Instruments (www.milinst.com) of the United Kingdom.
David Buckley endorses the Parallax Toddler robot and contributed to the Toddler design.

Page iii

Preface

David Buckley's Big Foot Parallax’s Early Toddler Design

This curriculum was authored by Parallax, Inc. and Bill Wong of Pennsylvania. Bill is an editor with
Electronic Design magazine and a serious BASIC Stamp robotics enthusiast. His daughter has won several
County and State awards with her maze solving robotic projects.

Audience and Teacher’s Guide

Students as young as 14 years old could be able to build and program the Parallax Toddler. Because
of the Toddler's more extensive mechanical system and more complex programming we believe that the
youngest student to have success with this kit would probably be about 12 years old. If you have experience
otherwise please let us know at stampsinclass@parallaxinc.com. The Advanced Robotics with the Toddler text
presently has no teacher’s guide. Based on demand we may elect to produce the answers to challenge
questions posed in this text.

Page iv

Preface

Educational Concepts from the Toddler

Educators always ask Parallax what they will learn from our different curriculum. The Toddler is
considered an advanced robotic project and generally will instruct the following concepts:

Interaction between mechanical and electrical systems and the ability to tune hardware or adjust
software to obtain desired results

Advanced programming skills with the BASIC Stamp 2. An efficient Toddler program makes use of
little-used Stamp programming tricks pertaining to the DATA statement, program routines that are
reused and “configured” prior to execution, variable aliasing, general sound programming practices
(constant/variable definitions that allow for program customization in just a few places rather than
throughout an entire program)

A step-wise process which starts with the basics and builds to something more complex and
ultimately more useful

Copyright and Reproduction

Stamps in Class lessons are copyright & Parallax 2002. Parallax grants every person conditional
rights to download, duplicate, and distribute this text without our permission. The condition is that this text,
or any portion thereof, should not be duplicated for commercial use resulting in expenses to the user beyond
the marginal cost of printing. That is, nobody should profit from duplication of this text. Preferably,
duplication should have no expense to the student. Any educational institution wishing to produce duplicates
for its students may do so without our permission. This text is also available in printed format from Parallax.
Because we print the text in volume, the consumer price is often less than typical xerographic duplication
charges. This text may be translated into any language with the prior permission of Parallax, Inc. obtained
through stampsinclass@parallaxinc.com.

Page v

Preface

Page vi

Experiment #1: Assembling the Toddler Robot

The Newest Member of the Family

Experiment #L. No matter how easy it looks, you'll soon realize that the
Assemblmg the mechanical movements and BASIC Stamp code required to
Toddler Robot make a two-servo biped move in a distinct fashion is more

complex than it’s rolling counterpart, the Boe-Bot.

The Toddler is capable of doing many things a rolling robot can do if you've got the patience to tune the
mechanics and software. Not only is the robot more entertaining than a rolling robot, you'll become a more
proficient programmer as you learn to exploit the BASIC Stamp’s capabilities. The Toddler demonstrates the
importance of a PBASIC program that uses constants and variables, program pointers and EEPROM access for
data storage. A well-designed program means you can easily tune the software for the right mechanical
control in just a few places rather than rewriting your entire program.

The Toddler’s motion is controlled using two servo motors (the type normally used in remote controlled
airplanes). The Toddler’s top servo motor is used to rotate the robot's center of gravity back and forth over
the two feet, and the bottom motor moves both legs back and forth. The legs use a simple parallel linkage to
the ankles that keeps the feet parallel to the ground. Both legs are linked together through the same motor so
that as one leg move forward, the other moves backwards.

By controlling one motor at a time the robot can move forward, backward, and turn either left or right. By
blending the control of both motors the robot can do move in a more coordinated fashion with smooth
movements.

A surface-mounted BASIC Stamp 2 module controls the Toddler. The BASIC Stamp 2 is used throughout the
Stamps in Class educational series and provides plenty of program space, speed and memory for use with a
Toddler.

Let’s Build the Toddler

The Toddler may be assembled a number of ways depending on the surface on which the robot walks, the type
of additions you make with sensors and hardware and the speed which you program to robot to walk. The
default assembly method is appropriate for hard, level surfaces and will be used to demonstrate code
throughout this text.

Tools Required

You'll need a screwdriver and a pair of pliers and to build the Toddler.

Advanced Robotics with the Toddler 1.0 - Page 1

Experiment #1: Assembling the Toddler Robot

A Note About Parts in the Toddler Kit

Appendix A includes a parts listing for the Toddler. These instructions refer to different pieces of hardware. If
you are missing parts from your Toddler kit Parallax will replace them free of charge; if you break parts or
want additional hardware for your customized Toddler you can order any piece on-line from our Component
Shop (www.parallaxinc.com/componentshop).

If you have trouble identifying the type of part referred to in these instructions, see the color back cover of
this text that shows each part with a colored picture and Parallax stock code.

Step #1: Install Top “Tilt” Servo

Parts Required:

- (4) 4/40 3/8” long pan-head machine screws
- (4) 4/40 nuts

- Toddler Body

- Toddler Servo Motor

Install the servo in the Toddler Body with the shaft
down as shown in the picture. Position the servo
squarely.

Using four (4) 4/40 3/8” pan-head machine screws
and (4) 4/40 nuts, screw the tilt servo into the body.
The easiest way to do this is to hold the nut with one
finger while turning the screwdriver with the other
hand.

Page 2 - Advanced Robotics with the Toddler 1.0

Experiment #1: Assembling the Toddler Robot

Step #2: Install Bottom “Stride” Servo
Parts required:

- (4) 4/40 3/8” long pan-head machine screws
- (4) 4/40 nuts
- (1) Toddler Servo Motor

Install the bottom servo with the shaft oriented
towards the front of the robot.

Using four (4) 4/40 3/8” machine screws and (4) 4/40
nuts, screw the stride servo into the body.

Step #3: Electrically Center Servos
Parts required:

- Battery Box

- (4) AA Batteries (not included)
- Serial Cable

- BASIC Stamp software

The servos should be “centered” prior to any
further Toddler assembly. This will ease any
fine-tuning adjustments by allowing them to
be made only in software. Don't skip this
step — it will make future adjustments easier.

Advanced Robotics with the Toddler 1.0 - Page 3

Experiment #1: Assembling the Toddler Robot

(Continued) Step #3: Electrically Center Servos

Plug the two servos into the Toddler printed circuit
board “A — Servos — B” connector. The GND label on
the board connects to the black servo lead.

Install four batteries in the battery pack and take
the entire assembly to your computer. The battery
pack’s white wire lead connects to the Toddler
board’s + terminal block. Use a screwdriver to
connect these wires.

Using the serial cable, connect the Toddler board to
the serial port of your computer. This connection is
shown in this picture.

The Toddler has a three-position power switch. The
state of each position is shown below. The three-
position switch has a middle position that powers
the entire circuit except servos. A complete
schematic of the Toddler is included in Appendix B.

Position O — No Power
Position 1 — Power to everything except servos
Position 2 — Everything is powered

Place the power switch in Position 2. The next step
is to program the BASIC Stamp.

Page 4 - Advanced Robotics with the Toddler 1.0

Op

+-P11-P10
LEFT IR SET

g—SsoneS—Y

™Xny zxny

“Toddler”.... (e

Vdd Vin Vss Oxxn
-P15 +- P14
X4 @ RIGHT IR SET

P15 Rev A

ooooo ooooo P3
ooooo ooooo p2
[o o o o o o N o p1
ooooo ooooo]

ooooo ooooo
P44/

www.parallaxinc.com

Experiment #1: Assembling the Toddler Robot

Open the BASIC Stamp Windows editor. * Write the following piece of code that will center both servos:?

B [Tt @ Jmmmmmmmmmm e o e oo
' Toddl er Program 1.1: Servo Centering
' {$STAWP BS2}

TiltServo CON 12 " Tilting servo on P12
Stri deServo CON 13 ' Stride servo on P13

Center: " Center both servos with 1500 us pul ses
PULSOUT Tilt Servo, 750
PULSOUT StrideServo, 750
PAUSE 30 ' Wit 25 ns

GOTO Cent er

Download your code using the Run | Run menu or by pressing the button on the toolbar. This program runs
in an endless loop. When the servos stop moving (this will happen almost instantaneously) move the power
switch to off.

Figure 1.1: Windows Editor with Toddler Program 1.1 Servo Centering

#3 BASIC Stamp - C:\WINDOWS\Desktop\T oddler\Manual Source Code\Toddler Program 1.1 Servo Centering bs2 [[m] E¥

_E'rligdit Directive: Bury ﬂe_lp
NEedH & s8N | F L2l DREFK AHAL &

Taddler Fragram 1.1 Serva Centenng bsl i

! Toddler Program 1.l Serwo Centering
! I§5TAMP BSZ}

TiltServo con 12 ! Tilting serwo on P12
jtridederwo con 13 ' 3tride serwo on PL3
Center: ! Center both- -serwvos with 1500 us pulses

PULSO0UT TiltSerwo, 750
POLIOUT Stridederwvo, 750
PATTZE 30

GOTO Center

Wailt 30 ns

EEEE ' _ =

! The Parallax BASIC Stamp Manual 2.0 includes a “Quick Start” section that details how to open and launch the BASIC Stamp
Windows editor.
2 Source code in this text is available in a zipped file for download from www.parallaxinc.com/Toddler

Advanced Robotics with the Toddler 1.0 - Page 5

Experiment #1: Assembling the Toddler Robot

Turn the power switch to position 0. Disconnect the servos from the Toddler board. Remove the batteries
from the battery box and disconnect the leads from the Toddler’s screw terminal.

Step #4: Install the Servo Horns
Parts required:

- Two servo horns
- (2) Small black screws to hold horn to servo

The servo horns should be installed as straight as the
spline allows without turning the motor.

Secure each servo horn with the small black Phillips
head screw using a screwdriver.

Step #5: Install Brass Wire Keepers on Stride Servo
Parts required:

- (2) Brass wire keepers (brass holder, set screw and
holding grommet) packaged in a bag

Attach the two brass wire keepers on the outermost
holes of the bottom servo’s control horn. Using pliers,
press the rubber “keeper” onto the post of the brass
wire keeper.

Put the two small screws into the threads of the brass
wire keeper so they don't get lost.

Page 6 - Advanced Robotics with the Toddler 1.0

Experiment #1: Assembling the Toddler Robot

Final installed brass wire keepers. The brass wire keepers are for the bottom (stride)
servo only. Don't install them on the tilt servo.

Step #7: Install Top Plate
Parts required:

- Toddler Top Plate
- (4) 4/40 3/8” flathead machine screws
- (4) 4/40 nuts

The top plate is most easily installed by turning the
Toddler body upside down. Position a 4/40 nut over the
hole and insert a 4/40 3/8” flathead screw through the
top plate from the bottom. Hold the nut with one hand
and tighten the screw with the other hand. Repeat
process for three more holes.

Note: This step uses the “flathead” countersunk 4/40
screws, not the flat “panhead” screws.

Advanced Robotics with the Toddler 1.0 - Page 7

Experiment #1: Assembling the Toddler Robot

Step #8: Install Leg Rods
Parts required:

- (2) 3/16” 3" long brass rods
- (4) plastic washers

Slide the two 3" 3/16” brass rods through the
two holes in the Toddler’s body.

Slide a plastic washer over each rod. This
washer will keep the Toddler’s legs from
rubbing against the body.

Page 8 - Advanced Robotics with the Toddler 1.0

Experiment #1: Assembling the Toddler Robot

Step #9: Slide Legs onto Toddler
Body

Parts required:
- (4) Toddler legs
Slide the four Toddler legs onto the

ends of the brass rods going through
the body.

Step #10: Secure Legs to Toddler Body

Parts required:

- (4) 3/16” collars with setscrew
- L hex-key wrench in collar package

Find the package of 3/16” metal collars and L-key.

Slide the collars onto the brass rod. Tighten each
collar using the L-key wrench. If the setscrew
doesn’t seem to tighten, slightly angle the wrench
to prevent stripping of the set screw or wrench.
Make sure the legs move freely when you're done.

Advanced Robotics with the Toddler 1.0 - Page 9

Experiment #1: Assembling the Toddler Robot

Step #11: Assemble Stride
Linkages

Parts required:

- (2) 4/40 plastic wire keepers

- (2) 3/8" 4/40 panhead machine
screws

- (2) brass right-angle wires

This is a two step process. First,
insert a 3/8” 4/40 panhead screw
through the holes on the rear left
leg. Tighten the screw into the
plastic right-angle bracket. Repeat
for the process for the rear right
leg. Rotate the body 180 degrees.

Using the two right-angle brass 3 s
wires, slide the straight end
through the brass wire keeper
hole. Insert the short end through
the top of the plastic right-angle
bracket. Tighten the screw to hold
the wire.

Adjust the linkages so the legs are
vertical, not slanted to either side.
Electrically center the servos again
if necessary if the servo was
accidentally moved.

Repeat for the other rear side.

Page 10 - Advanced Robotics with the Toddler 1.0

Experiment #1: Assembling the Toddler Robot

Step #12: Attach Ankles
Parts required:

- (2) ankle parts
- (4) 4/40 ¥ panhead machine screws

Attach the ankles to the legs using four 4/40 %’
screws. The longer part of the ankle should be
oriented towards the back of the Toddler’s body.
This placement moves the weight of the robot
forward and provides better overall control.

Step #13: Attach Feet
Parts required:

- Toddler left foot

- Toddler right foot

- (4) 4/40 plastic alan-head screws
- 3/32" hex L-key wrench

Line up the ankle into the foot's 3 hole from the
instep. If it is too tight slightly bend the tabs of the
feet outward.

Attach the left ankle to the left foot using two
plastic 4/40 screws and the 3/32" L-key wrench.
These screws have a round head that acts as a
bearing surface on the robot’s foot. Repeat for
the right side. Ensure free tilting of each foot
before proceeding to the next step.

Advanced Robotics with the Toddler 1.0 - Page 11

Experiment #1: Assembling the Toddler Robot

Step #14: Install Ball Joints
Parts required:
- (4) ball joints (ball joint with post, nut)

Install a ball joint on the outermost hole of each
foot. Securing the nut may require a small wrench
to tighten the ball joint unless you have a pair of
needle nose pliers. One way to do this is to hold the
nut with a finger and turn the ball joint until tight.

Install two ball joints on the tilting servo control
horn. Use the outermost two holes for these ball
joints.

Page 12 - Advanced Robotics with the Toddler 1.0

Experiment #1: Assembling the Toddler Robot

Step #15: Install Tilting Rods
Parts required:

- (2) .090” diameter 5.4” brass rod, 2/56 thread on each end
- (4) ball joint plastic cups with 2/56 thread

Thread two plastic ball joint cups onto the ends of the 5.4”
brass rod. Place the rod next to the control horn and foot
for sizing.

To properly position the ball joints make the finished piece
about 1/16” longer than it needs to be as the robot stands
straight up; this ensures that the out step of the feet will be
firm on the ground and aids with turning.

When you've got the length about right, snap the rod onto
the foot and servo control horn.

Repeat for the other side.

There is an easy way to remove the ball cups from the ball
joint. If you need to make adjustments simply place a
screwdriver between the ball cup and the Toddler’s foot and
carefully pry (snap) it off. It should pop off and can be
pressed back on after you make a few turns to adjust.

Advanced Robotics with the Toddler 1.0 - Page 13

Experiment #1: Assembling the Toddler Robot

Step #16: Install Tilting Rods (continued)

When you're done with this step your robot should look like
this one.

When you pick up the robot, verify that the robot’s feet are
flat on the ground, or that the outsteps are angled slightly
downward. Electronically center the servos with the BASIC
Stamp if needed.

Step #17: Install Battery Pack
Parts required:

- Battery box

- (2) 4/40 3/8" long flathead countersunk machine
screws

- (2) 4/40 nuts

Stand the Toddler up on its feet.

Install the plastic battery pack using two 4/40 3/8”
flathead screws and nuts. The flathead screws will be

countersunk into the battery pack when tightened. The
screws should be out of the way of the batteries.

Page 14 - Advanced Robotics with the Toddler 1.0

Experiment #1: Assembling the Toddler Robot

Step #18: Install Standoffs
Parts required:

- (4) 1" female/female 4/40 standoffs
- (4) 4/40 %" panhead machine screws

Using four 4/40 %" screws install the four 1”
standoffs on the top plate.

Step #19: Connect Toddler Board to
Battery Pack

Parts required:

- Toddler printed circuit board

The battery pack’s white lead connects to the
Toddler board’s + terminal. The other lead

connects to the - terminal. Using a
screwdriver secure both wires.

Advanced Robotics with the Toddler 1.0 - Page 15

Experiment #1: Assembling the Toddler Robot

Step #20: Install Batteries

Parts required (but not included in the
Toddler kit):

- (4) AA batteries
Install 4 AA batteries. Slide the Toddler’s
switch to Position 1 to verify that power is

properly connected. The green power light
will turn on.

Page 16 - Advanced Robotics with the Toddler 1.0

Experiment #1: Assembling the Toddler Robot

Step #21: Mount Toddler Board
Parts required:

- (4) 4/40 %' panhead machine
SCrews

Using four 4/40 Y%’ panhead
machine screws mount the
Toddler board on the top of the
standoffs.

Connect the bottom servo (stride)
to P12 on the Toddler board.
Connect the front servo (tilt) to
P13 on the Toddler board.

You're ready to rock!

As a final step, repeat Step #3 to center the servos. The Toddler should stand flat on the ground with both feet
aligned. When you pick the robot up, the feet outsteps may be slightly tilted downward. Adjustments can be
made to the ball joints. The easiest way to remove the ball joint from the socket is to carefully pry it with the
screwdriver.

Advanced Robotics with the Toddler 1.0 - Page 17

Experiment #1: Assembling the Toddler Robot

Challenges

Experiment #1 has no challenges. Plenty of them lie ahead!

Page 18 - Advanced Robotics with the Toddler 1.0

Experiment #2: Taking your First Steps

Making the Toddler walk requires some patience — the Toddler

Experiment #2: has more than 30 different individual movements. In this

. . experiment you'll learn how to make the robot walk forward

Takmg your First and backward by writing several routines. In Experiment #2

Steps examples the movements are not blended - first you tilt then
you stride. This is different than the way you walk.

After forward and backward movements are mastered we’ll try making some turns. You'll see that linking
movements requires attention to the previous step your Toddler took. For example, you can only move your
left leg forward if it is off the ground.

When the basics are mastered, you'll learn to store movements and sub-movements in EEPROM and write
more efficient code. All of this section is “open-loop” — there’s no feedback to determine whether or not you
have instructed your Toddler to lean to far left or right or even to look for obstacles.

Servo Control Basics

How a Servo Works

Normal (un-modified) hobby servos are very popular for controlling the steering systems in radio-controlled
cars, boats, and planes. These servos are designed to control the position of something such as a steering flap
on a radio-controlled airplane. Their range of motion is typically 90° to 270°, and they are great for
applications where inexpensive, accurate high-torque positioning motion is required. The position of these
servos is controlled by an electronic signal called a pulse train, which you'll get some first hand experience
with shortly. An un-modified hobby servo has built-in mechanical stoppers to prevent it from turning beyond
its 90° or 270° range of motion. It also has internal mechanical linkages for position feedback so that the
electronic circuit that controls the DC motor inside the servo knows where to turn to in response to a pulse
train.

Time Measurements and Voltage Levels

Throughout this student guide, amounts of time will be referred to in units of seconds (s), milliseconds (ms),
and microseconds (us). Seconds are abbreviated with the lower-case letter “s”. So, one second is written as
1s. Milliseconds are abbreviated as ms, and it means one one-thousandth of a second. One microsecond is
one one-millionth of a second. Table 2.1 shows how Milliseconds and Microseconds equate in terms of both
fractions and scientific notation.

Advanced Robotics with the Toddler 1.0 - Page 19

Experiment #2: Taking your First Steps

Table 2.1: Milliseconds and Microseconds and Toddler PCB Voltage Labels

Milliseconds and
Microseconds

1ms :iszl’ 103%s
1000

1

lme=———— s=1"10°s
1,000,000
Voltages and Toddler
PCB Labels

Vss =0V (ground)
Vdd =5V (regulated)
Vin =6V (unregulated)

Avoltage level is measured in volts, which is abbreviated with an upper case V. The Toddler board has sockets
labeled Vss, Vdd, and Vin. Vss is called the system ground or reference voltage. When the battery pack is
plugged in, Vss is connected to its negative terminal. Vin is unregulated 6 V (from four AA batteries), and it is
connected to the positive terminal of the battery pack. Vdd is regulated to 5 V by the Toddler’s onboard
voltage regulator, and it will be used with Vss to supply power to circuits built on the Toddler’s breadboard.

Only use the Vdd sockets above the Toddler’s breadboard for the Activities in
this workbook. Do not use the Vdd on the 20-pin app-mod header.

The control signal the BASIC Stamp sends to the serva’s control line is called a “pulse train,” and an example
of one is shown in Figure 2.1. The BASIC Stamp can be programmed to produce this waveform using any of its
I/0 pins. In this example, the BASIC Stamp sends a 1500 us pulse to P12 (stride servo) and P13 (tilt servo).
When the pulse is done being executed the signal pin is low. Then, the BASIC Stamp sends a 25 ms pause.

Page 20 - Advanced Robotics with the Toddler 1.0

Experiment #2: Taking your First Steps

Figure 2.1: Servo Pulse Train

TiltServo 1500 us 1500 us 1500 us 1500 us 1500 us
+5VDC — — | || !
ovee | I_I I_I """" | |
- -+ -
|7 25ms | 25ms | [25ms |
first pulse last pulse
StrideServo 1500 us 1500 us 1500 us 1500 us 1500 us
+5VDC — —
ovpe - J |_| |_| 77777777 ﬂ—rL
< > -+
| 25ms | | 25ms | [25ms |
first pulse last pulse

This pulse train has a 1500 us high time and a 25 ms low time. The high time is the main ingredient for
controlling a servo’s motion, and it is most commonly referred to as the pulse width. Since these pulses go

from low to high (0 V to 5 V) for a certain amount of time, they are called positive pulses. Negative pulses
would involve a resting state that's high with pulses that drop low.

The ideal pause between servo pulses can be about 10-40 ms without adversely affecting the servo’s

performance.

The BASIC Stamp 2’s PULSOUT command works in increments of 2

microseconds. For example, the following
pulse:

PULSQUT P13, 750 * 1500 us

snippet of code makes a 1500 us

pul se on pin 13

Advanced Robotics with the Toddler 1.0 - Page 21

Experiment #2: Taking your First Steps

Many Ways to Move the Toddler

Programming is a cross between an art and science. There are usually many different ways a program can be
written to get the same effect. Some are more efficient in program size and other are more efficient in
performance.

In this chapter, we look at a number of different actions the Toddler can perform including walking forward
and backward. The Toddler robot can make 36 different movements. These different movements must be
linked together in order to walk. Each movement has a selection of possible precedent movements and a
selection of possible follow-up movements.

We will also take a look at a number of different programs that perform these functions using different
approaches. We present three approaches for programming the Toddler's movements. Most will prefer the
last method. It uses more complicated programming techniques but it is more flexible and easier to use.
Experienced programmers will want to jump right to the last approach but it is worth checking out all three.

Approach #1: Brute Force

This approach uses explicit subroutines for each movement. Calling these routines performs complex
movements. It provides an obvious way of controlling the Toddler but enumerating all 36 movements
consumes lots of precious program space. It also makes changes unwieldy. For example, implementing
variable speed movements requires changes to all movement routines.

Approach #2: Data Tables

One obvious approach to consolidating 36 similar routines is to determine commonality within the routines
and generating one or more that parametrically perform the same functions. Putting the parameters into
data tables is one way to do this. Tables tend to be more concise in terms of construction compared to more
explicit routines because the tables only contain parameters.

Approach #3: State Transitions

The DATA tables approach is really a consolidation of the first approach. The programmer must remember
where the robot’s feet are and call the appropriate routine or fill in the table with the proper parameters.
The state transition approach is different because the Toddler keeps track of where its feet are. Transition
actions are now used to move from one state to another. There are basically three tilt and three stride
actions. That is significantly less than the 36 movements used in the other approaches.

Page 22 - Advanced Robotics with the Toddler 1.0

Experiment #2: Taking your First Steps

Theory of Operation

Humans take to walking naturally but the actual act is extremely complex. It requires the coordinated actions
of muscles and these actions are controlled by a very complex brain with a very sophisticated array of inputs
from vision to touch. The Toddler is at the other end of the spectrum. It has only two control servos with a
limited range of motion and essentially no feedback. Although the Toddler will not learn to walk of its own
accord, it can be programmed relatively easily once you understand the basics.

Humans usually walk using a controlled fall. The body tilts slightly forward and a leg is moved in front to stop
the fall. The process is repeated as the person proceeds to move forward. The effect is more noticeable when
a person is running. It is easy to see why a person falls on the ground if they misstep.

It is possible for humans to shuffle along like the Toddler. In this case the foot is placed in front and the body
is pulled along but it is hard to do. Try it. Tilting your body forward makes it easier but this is essentially a
controlled fall.

The Toddler can fall over but its movement is done via shuffling and balance. This is necessary because of the
limited range of movement. Essentially the Toddler can lean to either side or stand flat with both feet on the
floor. Either the left or right foot can be in front, in which case the other is in the back, or they can be side-
by-side. There are essentially 9 basic foot orientations and there are 4 transitions from each orientation to
another valid orientation for a total of 36 transitions or movements.

Even with this limited range of actions, the Toddler can move about a flat surface with relative ease. Its
restrictions do limit the Toddler to two basic kinds of movements though: walking in a straight line and
pivoting. Still, this can get the Toddler from point A to point B.

Walking is essentially a four phase process.

1. Tilt to one side

2. Move the leg that is not on the ground
3. Tilt to the other side

4. Move the leg that is not on the ground

This process essentially takes one step. The direction the leg moves controls the direction and the distance
traveled is controlled by how far the legs are moved. The speed of the Toddler depends on how fast the
actions are performed and how far the legs move.

Assuming the Toddler is not programmed to tilt too far in one direction, it will remain balanced. This means

the process can be stopped and restarted later at any point. This differs from humans in a controlled fall
because the foot must be there to stop the fall.

Advanced Robotics with the Toddler 1.0 - Page 23

Experiment #2: Taking your First Steps

Momentum plays a key part in writing programs to control the Toddler. The servo motors provide precise leg
position control. They can move the legs slowly or quickly and can stop them at any location along the way.
The Toddler also remains balanced even when tilted far to one side but this limit is difficult to attain when
moving quickly because of momentum. Speed up the leg movement and the amount of momentum the leg has
increases. Trying to stop it at the balance limit is only possible if the leg has little momentum. Too much
momentum at that point and the Toddler falls over.

For turns the Toddler can only pivot. It does not have a knee or hip joint like a human. The Toddler’s feet
always face forward so it cannot turn its feet to change direction. This does not restrict the Toddle to straight
line motion though. By pivoting, the Toddler can move from Point A to Point B in a straight line, pivot in the
direction of Point C and then walk in that direction to Point C.

Pivoting is also a four-phase process.

1. Tilt to one side

2. Move the leg that is not on the ground
3. Put both feet on the ground

4. Move the legs opposite of each other

This process works because of friction. The actual pivot occurs in the last phase where both feet are on the
ground. Essentially one leg pulls the Toddler forward while the other pulls it backward. This causes the Toddler
to pivot. The amount of rotation is a factor of leg placement and the level of friction between the Toddler’s
feet and the surface it is on. Low friction results in minimal pivoting. Too much friction and the Toddler can
fall over.

The Toddler is essentially restricted to flat surfaces. The type of surface affects the amount of friction
between the Toddler and the surface. Wood, hard carpet and kitchen floors are a good surface while ice and
rubber are not. Dense carpet works well. Putting different surfaces on the bottom of the Toddler’s feet can
increase the level of friction. This is typically done using tape (electrical, maybe even a small piece of grip
tape). There are not hard rules on choosing surfaces and increasing friction so experiment. You may have to
adjust the program controlling to the Toddler to take into account the surface. For example, you cannot
assume that two pivot actions will turn the Toddler 90 degrees.

This brings up the issue of accuracy. The Toddler does a good job of moving but it is relatively inaccurate in its
movements compared to its wheeled cousin, the Boe-Bot. If the Toddler goes six steps forward and six steps
back it will not wind up in exactly the same spot. It may be close but it is unlikely to be exact. Add some turns
and all bets are off. Getting the Toddler to walk in a square is next to impossible. It is easy to program the
commands to walk in a square but due to friction and the mechanical accuracy of the Toddler's movements,
the Toddler will probably not walk over its own footsteps.

Page 24 - Advanced Robotics with the Toddler 1.0

Experiment #2: Taking your First Steps

For most experiments, accuracy is not an issue. It is possible to track the Toddler’s orientation using the
optional Compass AppMod but tracking distance moved is a daunting task at best. These problems are beyond
the scope of this book but great areas for investigation. Answering the question “where is my robot?” is one
of the most challenging hobby and educational endeavors, whether it uses wheels or legs.

The lack of articulated legs prevents the Toddler from walking over obstacles. The Toddler cannot handle a

grade of any significance so stay away from ramps. The Toddler can avoid obstacles by going around them. In
later experiments, we examine obstacle detection using infrared devices included with the Toddler.

Advanced Robotics with the Toddler 1.0 - Page 25

Experiment #2: Taking your First Steps

Activity #1: Basic Walking Movements: Approach 1

The Toddler is a walking robot so getting it moving is a good starting point. Figure 2.2 shows a possible order
of operation for taking a few steps.

Figure 2.2: First Steps

Movement 0: Movement 1: Movement 2:
Starting Position Lean Right from Start Lean Right; Left Forward

Movement 3: Movement 4: Movement 5: Movement 6:
Lean Left, Right Back Lean Left, Right Forward Lean Right, Left Back Lean Right, Right Forward

Once the Toddler has walked Movements 0, 1 and 2 the process of Movements 3, 4, 5 and 6 can repeat to walk
in a straight line. The code to perform the first three movements is shown in the next three pages. Movement
1 and 2 are almost identical except that one adjusts the tilt and the other the stride. Movements 1, 3 and 5
would use the same code with different values. The same is true for movements 2, 4 and 6.

Page 26 - Advanced Robotics with the Toddler 1.0

Experiment #2: Taking your First Steps

The MO routine is unique. It is designed to place the feet of the Toddler on the ground and next to each other
regardless of where feet are when the routine starts. This can result in a jerking motion if the legs are not
already in or close to this point.

The M1 and M2 routines are representative examples of all the other movement routines in the program. The
M1 movement tilts the Toddler to the right. To do so, it sends pulses to both servos. It sends the same pulse
width to the stride motor so it remains stationary and the feet do not move forward or backwards. The tilt
servo is sent pulses that progressively change in width causing the tilt servo to rotate which in turn causes the
Toddler to lean.

The M2 routine does the same thing but in this case the tilt servo is held stationary while the stride servo is
driven by a set of different width pulses causing one leg to move ahead of the other.

The program uses constant named definitions for the range of servo pulse width limit values while the

examples with small snippets of code use numeric constant values. The effect is the same but the named
constants minimize changes to the program when experimenting with different values.

Advanced Robotics with the Toddler 1.0 - Page 27

Experiment #2: Taking your First Steps

Figure 2.3: Movement 0 Example (MO)

Starting Position

Movement 0 BASIC Stamp Code
ND:

FOR Pul ses = 1 TO 100 STEP 5
PULSOUT Tilt Servo,

750
PULSOUT StrideServo, 750
PAUSE 25

NEXT

Movement 0 Timing Diagram

TiltServo 1500 us 1500 us 1500 us
+5VDC — _‘ ||
ovDC I |_| —I

>

| 25ms | | 25ms |

first pulse
StrideServo 1500 us 1500 us 1500 us
[

—> ‘47 »} }« »‘ ‘«

SV | . —

+5VDC ‘

- [|1 \
t— t— >
25 ms | 25ms |

first pulse

Page 28 - Advanced Robotics with the Toddler 1.0

Ending Position

1500 us 1500 us

e ||

| 25ms |

last pulse

1500 us 1500 us

-~
|" 25ms |

last pulse

Experiment #2: Taking your First Steps

Figure 2.4: Movement 1 Example (M1)

Starting Position

Movement 1 BASIC Stamp Code

ML:
FOR Pul ses = 750 TO 620 STEP 5
PULSOUT TiltServo, Pul ses

PULSOUT StrideServo, 750
PAUSE 25

NEXT

Movement 1 Timing Diagram

TiltServo

Ending Position

1500 us 1490 us 1480 us 1250 us 1240 us
+5VDC — — |—| r —| L
ovbc — — ‘] ——— ﬂ—I_L
-~
25ms | | 25ms | |" 25ms |
first pulse last pulse
StrideServo 1500 us 1500 us 1500 us 1500 us 1500 us
+5vDC — — |—| —| |—| I
ovbc — — ‘ ‘ |
*—— > *—————»
| 25ms | | 25ms | | 25ms |
first pulse last pulse

Advanced Robotics with the Toddler 1.0 - Page 29

Experiment #2: Taking your First Steps

Figure 2.5: Movement 2 Example (M2)

Starting Position

Movement 2 BASIC Stamp Code
Me:
FOR Pul ses = 750 TO 850 STEP 5

PULSOUT TiltServo, 620
PULSOUT StrideServo,

Pul ses
PAUSE 25
NEXT
Movement 2 Timing Diagram
TiltServo 1240 us 1240 us 1240 us
+5VDC — |—| r —|
ovbc — — | |
-~
25ms | | 25ms |
first pulse
StrideServo 1500 us 1510us 1520 us
+5vDC — — |—| —| |—|
ovbc — — ‘ ‘ i
| 25ms | | 25ms |
first pulse

Page 30 - Advanced Robotics with the Toddler 1.0

Ending Position

1240 us

|" 25ms |
last pulse
1690 us 1700 us
| 25ms |
last pulse

Experiment #2: Taking your First Steps

An example program that performs all the movements for walking forward is shown is shown below. It is
possible to adjust the different constants in the program to make the robot walk faster or take bigger steps.
Be careful of large changes because the Toddler can fall over. More on that later.

This program also cleans up its movement so both feet are centered and flat on the floor when it is done. This
makes starting other programs easier since the feet are in a known position.

----- R = e e
Toddl er Program 2.1: First Steps Forward
{$STAWP BS2}

----- [1/O Definitions J-----ommm e m o e e

TiltServo CON 13 " Tilt servo on P12
Stri deServo CON 12 ' Stride servo on P13

MoveDel ay CON 25 ' in mcrcoseconds
TiltStep CON 5 " TiltServo step size
RightTilt CON 620 "Tilt limts
CenterTilt CON 750

LeftTilt CON 880

Stri deSt ep CON 5 ' StrideServo step size
Ri ght For war d CON 650 ' Stride limts
StrideCent er CON 750

Lef t For war d CON 850

MovelLoop VAR Ni b ' Loop for repeat novenents
Pul ses VAR Wor d ' Pul se variabl e

Take three full steps.

Mai n_Program

GosuB M ' center servos
GOSUB ML " tilt right
GOosuB M2 ' step left

Advanced Robotics with the Toddler 1.0 - Page 31

Experiment #2: Taking your First Steps

FOR MovelLoop = 1 to 3

GOSUB MB "tilt left
GOSuUB w4 ' step right
GOSUB Mb " tilt right
GOSUB Mb ' step left
NEXT
GOSUB MB "tilt left
GOsuB M7 ' center feet
GOosuB MB ' center servos
END
B [Subroutines J--------mmmm oo
MD

FOR Pul ses = 1 TO 100 STEP Stri deStep
PULSOUT TiltServo, CenterTilt
PULSQUT StrideServo, StrideCenter
PAUSE MbveDel ay

NEXT

RETURN

ML:

FOR Pul ses = CenterTilt TORightTilt STEP TiltStep
PULSOUT TiltServo, Pul ses
PULSQUT StrideServo, StrideCenter
PAUSE MbveDel ay

NEXT

RETURN

M2:

FOR Pul ses = StrideCenter TO LeftForward STEP Stri deStep
PULSOUT TiltServo, RightTilt
PULSOUT StrideServo, Pul ses
PAUSE MoveDel ay

NEXT

RETURN

MB:

FOR Pul ses = RightTilt TO LeftTilt STEP TiltStep
PULSQUT Tilt Servo, Pul ses
PULSQUT StrideServo, LeftForward
PAUSE MbveDel ay

NEXT

RETURN

V&:

FOR Pul ses = LeftForward TO Ri ght Forward STEP Stri deStep
PULSOUT TiltServo, LeftTilt
PULSOUT StrideServo, Pul ses
PAUSE MoveDel ay

Page 32 - Advanced Robotics with the Toddler 1.0

Experiment #2: Taking your First Steps

NEXT
RETURN

Vb:
FOR Pul ses = LeftTilt TORi ghtTilt STEP TiltStep
PULSQOUT Ti | t Servo, Pul ses
PULSQUT StrideServo, RightForward
PAUSE MoveDel ay
NEXT
RETURN

MB:
FOR Pul ses = Ri ght Forward TO Left Forward STEP Stri deStep
PULSOUT TiltServo, RightTilt
PULSOUT StrideServo, Pul ses
PAUSE MoveDel ay
NEXT
RETURN

M7 :
FOR Pul ses = LeftForward TO Stri deCenter STEP Stri deStep
PULSOUT TiltServo, LeftTilt
PULSOUT StrideServo, Pul ses
PAUSE MoveDel ay
NEXT
RETURN

VB:
FOR Pul ses = LeftTilt TO CenterTilt STEP TiltStep
PULSQUT Tilt Servo, Pul ses
PULSQUT StrideServo, StrideCenter
PAUSE MbveDel ay
NEXT
RETURN

Note that the program is downloaded to the Toddler using the serial cable with the power switch in either the
download (1) or run (2) position. The cable can remain connected to the Toddler while it is walking if there is
sufficient length to allow it to move freely about the PC. You may want to hold the cable near the Toddler as it
does make it slight less stable. The power on the Toddler should be turned off when disconnecting the cable.
The Toddler can then walk on its own when the power is turned on since the program is downloaded into
non-volatile memory. You can also program Toddler with the switch in Position 1, hold the reset button and
move it to Position 2 so it will walk.

Three constants could be modified to make it walk quicker: MoveDel ay and Ti |t Step and Stri deSt ep.
Decreasing MoveDel ay means there will be less pause between the servo pulses. Increasing Ti | t St ep and
StrideSt ep means the servo pulse width changes will be larger (making for fewer pulses to complete the
step).

Advanced Robotics with the Toddler 1.0 - Page 33

Experiment #2: Taking your First Steps

If the Toddler isn't starting with both feet firmly planted squarely on the ground, or if you would like to
experiment with larger step distances you could modify the CenterTilt and Stri deCent er values. This
would result in a need to also modify the right and left limits for both the tilt and stride.

These parameters are from the following code snippet in Toddler Program 2.1.

RightTilt CON 620 "Tilt limts
CenterTilt CON 750

LeftTilt CON 880

StrideSt ep CON 5 ' StrideServo step size
Ri ght For war d CON 650 ' Stride limts

Stri deCenter CON 750

Lef t For war d CON 850

Page 34 - Advanced Robotics with the Toddler 1.0

Experiment #2: Taking your First Steps

Activity #2: Walking Backwards: Approach 1

The Toddler robot can walk backward as well as forward but it is not simply a matter of using the steps in the
prior program in reverse order. The Toddler moves in the reverse fashion but the functions necessary to do
this will be different. With just over half a dozen routines, the last sample program is relatively simple.
Changing it to handling a different direction is not too difficult. Keep in mind that the two other approaches
to performing these tasks are presented later in this chapter.

In the prior program, the subroutine for each step was numbered sequentially. In this program, the steps will
be slightly different so we can use different routine names. The starting movement is the same as the prior
program but the second step will be Movement 9 that matches the M9 routine.

Figure 2.6: First Steps — In Reverse

Movement 0: Movement 1: Movement 9:
Starting Position Lean Right from Start Lean Right; Left Back

Movement 10: Movement 11: Movement 12: Movement 13:
Lean Left, Left Back Lean Left, Right Back Lean Right, Right Back Lean Left, Right Forward

Advanced Robotics with the Toddler 1.0 - Page 35

Experiment #2: Taking your First Steps

As with the forward walking program, the Toddler starts with Movements 0, 1 and 9. The process of
Movements 10, 11, 12 and 13 can repeat to walk in a straight line but backwards. An example program is
shown is shown below. Adjust the different constants in the program to make your robot walk faster or take
higger steps. The program also cleans up its movement so both feet are centered and flat on the floor.

Note that the routines with the same name have been extracted from the first sample program. A program
that used this approach but required more sophisticated actions would need more routines with the potential
of requiring all 36.

----- R = e e
Toddl er Program 2.2: First Steps Backward
{$STAWP BS2}

----- [1/O Definitions J-----ommm oo e

TiltServo CON 13 " Tilt servo on P12
Stri deServo CON 12 ' Stride servo on P13

MoveDel ay CON 25 ' in mcrcoseconds
TiltStep CON 5 ' TiltServo step size
RightTilt CON 620 "Tilt limts
CenterTilt CON 750

LeftTilt CON 880

StrideSt ep CON 5 ' StrideServo step size
Ri ght For war d CON 650 ' Stride limts
StrideCenter CON 750

Lef t For war d CON 850

MovelLoop VAR Ni b ' Loop for repeat novenents
Pul ses VAR Wor d ' Pul se variabl e

Take three full steps.

Page 36 - Advanced Robotics with the Toddler 1.0

Experiment #2: Taking your First Steps

Mai n_Program

GosuB M ' center servos
GOSUB ML " tilt right
GOosuB WD ' step right
FOR MovelLoop = 1 to 3
GOSUB MLO "tilt left
GOSUB ML1 ' step left
GOSUB ML2 " tilt right
GOSUB ML3 ' step right
NEXT
GOSUB MLO "tilt left
GOSUB ML4 ' center feet
GOosuB MB ' center servos
END
B [Subroutines J--------mmmm oo
MD

FOR Pul ses = 1 TO 100 STEP Stri deStep
PULSOUT TiltServo, CenterTilt
PULSQUT StrideServo, StrideCenter
PAUSE MbveDel ay

NEXT

RETURN

ML:
FOR Pul ses = CenterTilt TORightTilt STEP TiltStep
PULSOUT Tilt Servo, Pul ses
PULSQUT StrideServo, StrideCenter
PAUSE MbveDel ay
NEXT
RETURN

VB:
FOR Pul ses = LeftTilt TO CenterTilt STEP TiltStep
PULSQUT Tilt Servo, Pul ses
PULSQUT StrideServo, StrideCenter
PAUSE MbveDel ay
NEXT
RETURN

VB:
FOR Pul ses = StrideCenter TO R ght Forward STEP Stri deStep
PULSOUT TiltServo, RightTilt
PULSOUT StrideServo, Pul ses
PAUSE MoveDel ay
NEXT
RETURN

Advanced Robotics with the Toddler 1.0

 Page 37

Experiment #2: Taking your First Steps

MLO:
FOR Pulses = RightTilt TO LeftTilt STEP TiltStep
PULSOUT Ti | t Servo, Pul ses
PULSQUT StrideServo, RightForward
PAUSE MoveDel ay
NEXT
RETURN

ML1:
FOR Pul ses = Ri ght Forward TO Left Forward STEP Stri deStep
PULSOUT TiltServo, LeftTilt
PULSOUT StrideServo, Pul ses
PAUSE MoveDel ay
NEXT
RETURN

ML2:
FOR Pul ses = LeftTilt TORi ghtTilt STEP TiltStep
PULSQUT Tilt Servo, Pul ses
PULSQUT StrideServo, LeftForward
PAUSE MbveDel ay
NEXT
RETURN

ML3:
FOR Pul ses = LeftForward TO Ri ght Forward STEP Stri deStep
PULSOUT TiltServo, RightTilt
PULSOUT StrideServo, Pul ses
PAUSE MoveDel ay
NEXT
RETURN

ML4:
FOR Pul ses = Right Forward TO Stri deCenter STEP Stri deStep
PULSOUT TiltServo, LeftTilt
PULSOUT StrideServo, Pul ses
PAUSE MoveDel ay
NEXT
RETURN

Page 38 - Advanced Robotics with the Toddler 1.0

Experiment #2: Taking your First Steps

Activity #3: Using a DATA Table to Store Movements: Approach 2

The length of the two prior programs is similar but more complex programs could grow larger simply because
more movement routines would be necessary. Moving information in tables is one way of simplifying the
programming task. This next sample application employs both fixed size and variable length tables.

The fixed size table is used to store the information about each movement. The variable length tables are used
to store a sequence of movements. This allows complex movements to be of arbitrary length. The tables are
accessed using the PBASIC ReaD command. See the BASIC Stamp Manual for this command’s syntax.

The fixed size table contains four byte entries.® The first byte is the starting tilt value and the second byte is
the ending tilt value. The third and fourth bytes are the starting and ending stride values. The READ command
can only access byte values (i.e., one “letter” at a time) but the servo pulse width values are greater than 255
(we're using values between 600 and 900), the limit of an unsigned byte. This is why the values are divided by
10 before storing them in the table and when they must be multiplied by 10 before they are used. This
approach is more complex to execute but it cuts the table size in half. Named constants simplify the table
construction.

The Movenent routine assumes that each entry is used to tilt or move the Toddler. It checks the first two
bytes to see if they are the same and handles the entry accordingly.

Only eight (8) movements are employed in this program but it is easy to see how all 36 movements could be
easily added to the table.

The fixed table is actually a two dimensional entity. The first dimension is the four bytes for each entry. The
second is each movement entry. The indexing for this second dimension is handled using a LOOKUP statement.
Since the table entries are a fixed size, it is possible to index the array numerically using a statement like:

READM + ((Dx — 1) * 4) , T1

Using the LookuUP statement does provide some flexibility if the order of the array indexing is changed in the
future or if the size of the entry changes.

The variable length tables store the sequence of movement numbers for a particular action. The index of one
of these tables is passed to the single movement routine. It is possible to repeat a sequence of actions using
one of these tables buta FOR . . NEXT loop is used for controlling each step since the loop limit value is
easy to change. This keeps the program from increasing in size as functional requirements change.

® Ifyou are interested in learning about the difference between bits, nibbles, bytes and words see the Basic Analog and Digital text.

Advanced Robotics with the Toddler 1.0 - Page 39

Experiment #2: Taking your First Steps

B R = e e
' Toddl er Program 2.3: First Steps Forward Using Tabl es
' {$STAW BS2}

B [1/O Definitions J-----ommmm oo e

TiltServo CON 13 " Tilt servo on P12
Stri deServo CON 12 ' Stride servo on P13

MoveDel ay CON 25 ' in mcrcoseconds
TiltStep CON 10 ' TiltServo step size
RightTilt CON 620 "Tilt limts
CenterTilt CON 750

LeftTilt CON 880

StrideSt ep CON 10 ' StrideServo step size
Ri ght For war d CON 650 ' Stride limts
StrideCenter CON 750

Lef t For war d CON 850

MovelLoop VAR Ni b ' Loop for repeat novenents
Pul ses VAR Wor d ' Pul se variable

Dx VAR Pul ses

Mk VAR Word

T1 VAR Byt e

T2 VAR Byt e

S1 VAR Byt e

S2 VAR Byt e

' Take three full steps.

The following state tables are |lists of novenent state nunbers.
A zero indicates the end of a list.
These are used with the Movenent routine.

St ar t For war d DATA 1, 2, 0
Wal kFor war d DATA 3, 4, 5, 6, 0
Fi ni shFor war d DATA 3, 7, 8 0

Page 40 - Advanced Robotics with the Toddler 1.0

Experiment #2: Taking your First Steps

Mai n_Program
GosuB M ' center servos

Mk = Start Forward
GOSUB Movenent

FOR MovelLoop = 1 to 3
Mk = Wl kFor war d
GOSUB Movenent

NEXT

Mk = Fi ni shForwar d
GOSUB Movenent "tilt left
END

----- Constants and tables for Movenent routine -----

' Note: DATA is stored as bytes so the value nust be | ess than 256.
Di vi ding val ues by 10 keeps the values within this range.

CT CON CenterTilt/ 10
RT CON RightTilt/10
LT CON LeftTilt/10

SC CON Stri deCenter/ 10
LF CON Lef t Forwar d/ 10
RF CON Ri ght For war d/ 10
ML DATA CT, RT, SC, SC
MR DATA RT, RT, SC, LF
MB DATA RT, LT, LF, LF
W DATA LT, LT, LF, RF
Vb DATA LT, RT, RF, RF
M6 DATA RT, RT, RF, LF
Vg DATA LT, LT, LF, SC
VB DATA LT, CT, SC, SC

----- Moverent : Move feet using DATA table referenced by M -----

Input: Mk = table index, table ends in O

Movenent :
READ Mk, Dx ' read state table nunber
M = M + 1

Advanced Robotics with the Toddler 1.0 - Page 41

Experiment #2: Taking your First Steps

IF Dx = 0 THEN DoRet urn ' skip if no nore states
LOOKUP Dx, [ML, ML, M2, M3, M4, M, M5, M7, MB], Dx

READ Dx, T1 ' read table entry
READ Dx+1, T2
READ Dx+2, S1
READ Dx+3, S2

IF T1 = T2 THEN Movenent Stri de

FOR Pul ses = T1*10 TO T2*10 STEP Tilt Step
PULSOUT Tilt Servo, Pul ses
PULSQUT StrideServo, S1*10
PAUSE MbveDel ay

NEXT

GOTO Movenent

Movenent Stri de:
FOR Pul ses = S1*10 TO S2*10 STEP Stri deStep
PULSOUT Tilt Servo, T1*10
PULSOQUT StrideServo, Pulses
PAUSE MbveDel ay
NEXT
GOTO Movenent

----- M): Move feet to initial center position -----

MD:

FOR Pul ses = 1 TO 100 STEP Stri deStep
PULSOUT TiltServo, CenterTilt
PULSQUT StrideServo, StrideCenter
PAUSE MbveDel ay

NEXT

DoRet ur n:
RETURN

Adding support for walking backward is easier with this program. Three things need to be changed. First, the
extra movement entries must be added to the fixed size table and the LookuP command. Second, a variable
length table must be added for stepping through a backward foot-step. Finally, the table name and a call to
the movement routine must be added. This is significantly better than adding more routines to the program.

Page 42 - Advanced Robotics with the Toddler 1.0

Experiment #2: Taking your First Steps

Activity #4: Using State Transitions For Movements: Approach 3

Now we take a look at a completely different way of handling movement control. The prior two approaches
essentially required the programming to string together a series of subroutine calls in the proper order. In
those cases, the programmer knew what the prior state was and would only use movement routines that
were relevant. It was relatively simple for the basic actions examined thus far but it gets very tedious as the
actions become more complex.

The state transition approach presented here changes the kinds of routines used from ones that have a
known starting and ending state to routines that indicate a desired ending state. The program keeps track of
the current state and adjusts accordingly. The reason that this approach simplifies things is that there are
really only two kinds of actions, tilt and stride, that the Toddler can perform and only three logical
orientations with each of these for a total of nine states. The following diagram shows these states.

Figure 2.7: State Transition Approach

Tilt Tilt Tilt

Advanced Robotics with the Toddler 1.0 - Page 43

Experiment #2: Taking your First Steps

Each circle represents a state. The center shows the orientation of the Toddler’s legs and body. The arrow
indicates the front of the Toddler. The dark background in a rectangle indicates that a leg is on the floor. The
white background indicates the leg is in the air. The two letters at the top of the circle provide a
representation for the Toddler positioning. The first letter indicates the tilt (T) and the second indicates stride
(S) or what foot is in front. The letters can be L, C, or R. C indicates the respect servo motor is centered. For
the tilt, C indicates both feet are on the ground. For stride, C indicates that both feet are inline along the
center of the body’s axis. The reason for naming each state will become apparent soon.

There are also bi-directional arrows showing valid transitions from one state to another. The label on the line
indicates the type of change that occurs. The Pivot designation is the same as Stride but we make the
distinction because this will cause the Toddler to pivot.

Nine states, each with four possible transitions yields 36 distinct transitions. If the transition routines are
labeled using their starting and ending state names with the format TSxTS then movement MO is CCxRC as it
starts with both legs together in state CC and ends up leaning to the right in state RC. Using this naming
convention makes programming easier in the prior examples with the code looking like this.

' Take three full steps.

Mai n_Program

GosuB M ' center servos
GOSUB CCxRC " tilt right
GOSUB RCxRL ' step left
FOR MovelLoop = 1 to 3
GOSUB RLxLL "tilt left
GOSUB LRxLR ' step right
GOSUB LRXRR " tilt right
GOSUB RRxRL ' step left
NEXT
GOSUB RLxLL "tilt left
GOSUB LLxLC ' center feet
GOSUB LCxCC ' center servos

END

The advantage of the name change is obvious. The last two letters of the prior routine are the starting two
letters of the next routine.

Of course, this is still relatively cryptic and without the comments the actions would definitely be confusing.
The problem is that this approach requires knowledge of the prior state.

Page 44 - Advanced Robotics with the Toddler 1.0

Experiment #2: Taking your First Steps

Now take a look at the next sample code snippet. It does away with the comments (not always a good idea but g
fine for this discussion) and the routines being called indicate what action is being performed.

' Take three full steps.

Mai n_Program
GosuB M ' center servos

GOSUB Ti | t Ri ght
GOSUB Sti deLef t

FOR MovelLoop = 1 to 3
GOSUB TiltlLeft
GOSUB Stri deRi ght
GOSUB Ti |t Ri ght
GOSUB Strideleft

NEXT

GOSUB TiltLeft

GOSUB Stri deCenter

GOSUB Ti | t Cent er
END

So what happened? You need to take a look at the next program listing to see how these routines were
implemented but essentially two variables, Current Ti 1 t and Current Stri de, were added to keep track of
where the feet are. The routine simply applies the designated change.

There are only six routines that need be used. Any can be applied in any order although only four will cause a
change at any time.

Why? Because two of the six will cause the Toddler to stay in the state that it is currently in. For example, if
the Toddler is tilting to the left then calling the Ti | t Lef t routine will leave it in the same position. There will
be a delay while it executes the routine but it turns out to be a very short period of time. It is not noticeable
when watching the Toddler move.

The following program implements the routines used in the prior code snippet but it retains some of the ideas

employed in the last full program listing (Program 2.3) that used tables. They are still worthwhile although they
are used in a slight different fashion here.

Advanced Robotics with the Toddler 1.0 - Page 45

Experiment #2: Taking your First Steps

B R = e e
' Toddl er Program 2.4: First Steps Forward
' {$STAW BS2}

B [1/O Definitions J-----ommmmm oo e e

TiltServo CON 13 " Tilt servo on P12
Stri deServo CON 12 ' Stride servo on P13

MoveDel ay CON 25 ' in mcrcoseconds
TiltStep CON 10 ' TiltServo step size
RightTilt CON 620 "Tilt limts
CenterTilt CON 750

LeftTilt CON 880

StrideSt ep CON 10 ' StrideServo step size
Ri ght Stri de CON 650 ' Stride limts
CenterStride CON 750

Left Stride CON 850

MovelLoop VAR Ni b ' Loop for repeat novenents
Pul ses VAR Wor d ' Pul se vari abl e
CurrentTilt VAR Wor d

Current Stride VAR Wor d

Newval ue VAR Wor d

Dx VAR Pul ses

VK VAR Wor d

' Take three full steps.

' The following state tables are lists of nobvenent state nunbers.
A xx indicates the end of a list.
These are used with the Movenent routine.

TL CON 0

Page 46 - Advanced Robotics with the Toddler 1.0

Experiment #2: Taking your First Steps

TC CON 1

TR CON 2

SL CON 3

SC CON 4

SR CON 5

XX CON 255
Wal kFor war d DATA
Wal kBackwar d DATA
Tur nLef t DATA
Fi ni shFor war d DATA

Mai n_Program

EN

GOSUB Reset CC

FOR MovelLoop = 1 to 3
Mk = Wl kFor war d
GOSUB Movenent

NEXT

FOR MovelLoop = 1 to 3
Mk = TurnLeft
GOSUB Movenent

NEXT

FOR MovelLoop = 1 to 3
Mk = Wal kBackwar d
GOSUB Movenent

NEXT

Mk = Fi ni shForwar d
GOSUB Movenent
D

TR,
TR,
TL,
TR,

SL,
SR,
SR,
SC,

Input: Mk = table index, table ends in xx

IF Dx = xx THEN Movenent Done

GOSUB DoMovenent
GOTO Movenent

TL,
TL,
TC,
TC,

SR, xXx
SL, xx
SL, xx

XX

skip if end of

done

read next action

list

execut e novenent
| oop until

Advanced Robotics with the Toddler 1.0

- Page 47

Experiment #2: Taking your First Steps

DoMovenent :
BRANCH Dx, [TiltLeft, TiltCenter, Til tRi ght, StrideLeft, StrideCenter, Stri deRi ght]
"will fall through if invalid index
Movement Done:
RETURN

---- Movenent routines can be called directly ----

TiltLeft:
Newval ue = LeftTilt
GOTO Movenent Til t

TiltCenter:
Newval ue = CenterTilt
GOTO Movenent Til t

TiltRi ght:
Newal ue = RightTilt

Movenment Ti l t:
FOR Pul ses = CurrentTilt TO Newval ue STEP Tilt Step
PULSOUT Tilt Servo, Pul ses
PULSQUT StrideServo, CurrentStride
PAUSE MbveDel ay
NEXT

CurrentTilt = Newal ue
RETURN

StrideLeft:
NewVal ue = LeftStride
GOTO Movenent Stri de

StrideCenter:
NewVal ue = Center Stride
GOTO Movenent Stri de

Stri deRi ght:
Newval ue = RightStride

Movenent Stri de:
FOR Pul ses = CurrentStri de TO Newval ue STEP Stri deStep
PULSOUT Tilt Servo, CurrentTilt
PULSOQUT StrideServo, Pulses
PAUSE MbveDel ay
NEXT

Current Stride = Newval ue
RETURN

Page 48 - Advanced Robotics with the Toddler 1.0

Experiment #2: Taking your First Steps

B Move feet to initial center position ----- g

Reset CC:
CurrentTilt
Current Stride

CenterTilt
CenterStride

FOR Pul ses = 1 TO 100 STEP Stri deStep
PULSOUT TiltServo, CenterTilt
PULSQUT StrideServo, CenterStride
PAUSE MbveDel ay

NEXT

DoRet ur n:
RETURN

Ok, we cheated. There is a little turning done in the program and that will be covered in more detail in the
next experiment. The reason for including it here is that the pivot action is not explicitly done by a routine.
Instead the general movement routine handles all actions. The pivot action is defined within the Tur nLef t
table.

The variable table handling is also changed to allow access to the six action functions like Ti | t Lef t . Each is
implemented as a routine that exits via a RETURN instruction. This is why the DoMbverent routine is called via
GOSUB rather than putting the BRANCH statement within a loop.

Also note the refinement with the LOOKUP statement. The named constant xx is used to terminate a variable
length table. The value 255 is out of range for the values used and it allows the first value to be 0.

This approach will be the one used in subsequent programs in the book. Extending tables like val kFor war d
should be significantly easier since there are only six valid values. It is also possible to conserve space by using
only 4 bits to store each value but this makes table definition and extraction very difficult due to limitations of
PBASIC. Still, it is an option should a program become code-space constrained.

Advanced Robotics with the Toddler 1.0 - Page 49

Experiment #2: Taking your First Steps

1. Increase the walking speed and determine the maximum speed before the Toddler falls over.
2. Determine whether the Toddler operates the same on different surfaces such as carpet, wood and tile.

3. The Toddler can start moving its left or right foot first. Try changing the programs so that it moves the
opposite foot first.

4. Have the Toddler perform a little dance using a more complex series of steps such as moving the foot in
the air forward and backward a few times.

Page 50 - Advanced Robotics with the Toddler 1.0

Experiment #3: Turning Around

The Toddler is a bit stiff. It can only move its feet forward and
) backward but it cannot turn its feet relative to it's body. This
Experiment #3: doesn't stop it from being able to turn. While walking in a
Turning Around straight line for the Toddler is somewhat similar to a person,
turning is very different. The closest thing to turning like the

Toddler for a person is trying to turn on ice with flat shoes.

The process of turning right on ice is relatively simple. Put your left foot forward and place it on the ground.
Pull the left foot towards you. Pull it back and you pivot to the right. If the ice is wet and slippery then it may
take quick a number of attempts to turn 90 degrees. Put the right foot forward to turn left.

The standard Toddler does not do well on ice but it uses the same principle on other surfaces. The Toddler’s
feet are smooth metal that provides the slick surface. Turning works best when the surface the Toddler sits
on provides some friction. If the surface is too slippery then it is possible to modify the Toddler’s feet to
provide more friction. This is typically done using a tape that has a rougher surface than the Toddler’s metal
feet. The entire foot need not be covered. There only needs to be enough coverage to add friction for the
turn. The tape should not have an affect on straight-line movement.

Activity #1: Making a Turn

The Toddler turns by placing both feet flat on the ground and sliding them in opposite directions. Moving the
feet in opposite directions is somewhat counterproductive because some of the forces are in opposite
directions. The actual movement is more of a pivot than a turn.

The Toddler pivots only a small fraction of a circle at a time. It may take five to ten movements to turn 90
degrees (unless you put a small piece of grip tape on the feet). Twice that to turn around. The basic turning
process is four movements like those shown below in Figure 3.1. A left turn works the same way except the tilt
and leg movements are reversed.

Advanced Robotics with the Toddler 1.0 - Page 51

Experiment #3: Turning Around

Figure 3.1: Walking in a Circle (Right Hand Turns)

Movement 1 Movement 2

Movement 3: Movement 4:

»

The first three movements place the left foot in front while the pivoting action occurs in the last movement.
The following program performs this process multiple times. It performs both a right and a left turn. The key
additions to Program 2.4 is the Tur nRi ght table entry. The next section addresses two other entries that are
presented in this program. These are W deTur nLef t and Pi vot Ri ght .

[y [Title Jomcmmmmmmmmmmmmcmeoceccoeoe s

Toddl er Program 3. 1: Turning
" {$STAWP BS2}

B [/O Definitions J---------mn-mmmmnnononn

TiltServo CON 13
Stri deServo CON 12

MoveDel ay CON 25
TiltStep CON 10
RightTilt CON 620
CenterTilt CON 750
LeftTilt CON 880
StrideSt ep CON 10
Ri ght Stri de CON 650

Page 52 - Advanced Robotics with the Toddler 1.0

Tilt servo on P12
Stride servo on P13

in mcrcoseconds
TiltServo step size

Tilt limts

StrideServo step size

Stride lints

Experiment #3: Turning Around

CenterStride
Left Stride

MovelLoop
Pul ses

CurrentTilt
Current Stride
Newval ue

TL CON
TC CON
TR CON
SL CON
SC CON
SR CON
XX CON
Wal kFor war d

Wal kBackwar d

Tur nLef t

W deTur nLef t

Tur nRi ght

Pi vot Ri ght

Fi ni shForwar d

Mai n_Program
GOSUB Reset CC

750
850

VAR
VAR

VAR
VAR
VAR

VAR
VAR

Ni b
Wor d
Wor d

Wor d
Wor d

Pul s
Wor d

es

Loop for repeat novenents
Pul se vari abl e

0

1

2

3

4

5

255
DATA

DATA

DATA
DATA

DATA
DATA

DATA

FOR MovelLoop = 1 to 5

Mx = Tur nRi ght
GOSUB Movenent
NEXT

routine.

TR,
TR,

TL,
TL,

TR,
TR,

TR,

SL,
SR,

SR,
SR,

SL,
SL,

SC,

TL,
TL,

TC,
TC,

TC,
TC,

TC,

SR,
SL,

SL,
SL,

SR,
SR,

XX

The following state tables are |lists of novenent state nunbers.
A xx indicates the end of a list.
These are used with the Myvenent

XX
XX

XX
TR, SL, TL, SR xx

XX
TL, SL, TC, SR xx

Advanced Robotics with the Toddler 1.0

- Page 53

Experiment #3: Turning Around

FOR MovelLoop = 1 to 5
Mk = TurnLeft
GOSUB Movenent

NEXT

FOR MovelLoop = 1 to 5
Mx = Pivot R ght
GOSUB Movenent

NEXT

FOR MovelLoop = 1 to 5
Mk = WdeTurnLeft
GOSUB Movenent

NEXT

Mk = Fi ni shFor war d

GOSUB Movenent
END

Input: Mk = table index, table ends in xx

Movenent
READ Mk, Dx ' read next action
M = M + 1
I F Dx = xx THEN Movenent Done " skip if end of Iist
GOSUB DoMovenent ' execute movenent
GOTO Mbvenent " loop until done
DoMovenent :

BRANCH Dx, [TiltLeft, TiltCenter, Til tRi ght, StrideLeft, StrideCenter, Stri deRi ght]
"will fall through if invalid index
Movement Done:
RETURN

---- Movenent routines can be called directly ----

TiltLeft:
Newval ue = LeftTilt
GOTO Movenent Til t

TiltCenter:

Newval ue = CenterTilt
GOTO Movenent Til t

Page 54 - Advanced Robotics with the Toddler 1.0

Experiment #3: Turning Around

TiltRi ght:
Newal ue = RightTilt

Movenment Ti l t:
FOR Pul ses = CurrentTilt TO Newval ue STEP Tilt Step
PULSOUT TiltServo, Pul ses
PULSQUT StrideServo, CurrentStride
PAUSE MbveDel ay
NEXT

CurrentTilt = Newal ue
RETURN

StrideLeft:
NewVal ue = LeftStride
GOTO Movenent Stri de

StrideCenter:
NewVal ue = CenterStride
GOTO Movenent Stri de

Stri deRi ght:
Newval ue = Right Stride

Movenent Stri de:
FOR Pul ses = CurrentStride TO Newval ue STEP Stri deStep
PULSOUT TiltServo, CurrentTilt
PULSOQUT StrideServo, Pulses
PAUSE MbveDel ay
NEXT

Current Stride = Newval ue
RETURN

----- Move feet to initial center position -----

Reset CC:
CurrentTilt
Current Stride

= CenterTilt

= CenterStride

FOR Pul ses = 1 TO 100 STEP Stri deStep
PULSOUT TiltServo, CenterTilt
PULSQUT StrideServo, CenterStride
PAUSE MbveDel ay

NEXT

DoRet ur n:
RETURN

Advanced Robotics with the Toddler 1.0 - Page 55

Experiment #3: Turning Around

Activity #2: Different Turns

The basic turns will get the Toddler where it wants to go but there are many variations on this theme. For
example, turning in place can be useful in tight places. The Pi vot Ri ght table entry shows how this can be
done. In this case pivoting is accomplished by performing one turning movement by moving the leg forward.
This is immediately followed with the same type of movement but it starts by stepping backward first. The
combination results in two turn actions and a new orientation while leaving the Toddler in approximately the
same position.

The other table entry included in the program is W deTur nLef t . This takes the Toddler around a circle with a
wider radius. The trick is adding a forward step after each turning action. A close look at the Toddler’s path
will show that the movement is not really an arc but rather the perimeter of a polygon with rounded corners.
Still, this is close enough to an arc that most people will think the Toddler is going around a circle.

Hopefully the simplicity of the state transition approach is apparent with Program 3.1. It is identical to
Program 2.4 except for the additional tables and calls that utilize these tables.

Page 56 - Advanced Robotics with the Toddler 1.0

Experiment #3: Turning Around

1. Only a few turning variations were presented in the sample programs. Add the table entries needed to
perform the actions not included.

2. The Toddler is symmetrical in construction and movement. It can make a turn going forwards or
backwards. Create a program that can perform the actions presented but going backwards instead.

3. Full leg movements were used in the sample applications. Determine what happens if the movements are
shorter. For example, instead of moving from state CR to CL, try moving from CR to CC.

4, WideTurnLeft turns the Toddler to the left but the turn radius is wider than TurnLeft. Make the Toddler’s
turn even wider. Hint: there are two ways of doing this. One is related to forward movement. The other is
related to turn movement.

Advanced Robotics with the Toddler 1.0 - Page 57

Experiment #3: Turning Around

Page 58 - Advanced Robotics with the Toddler 1.0

Experiment #4: Coordinated Walking

Walking and turning are useful operations but they don't get

Experi_ment #4: the Toddler very far. It is possible to string together a number
Coordinated of actions using multiple cosus statements but this can get
Walking tedious. It is also less efficient than the approach presented in

this experiment.

The program in Experiment #3 used tables to store a series of basic movements. More complex actions can be
done using very long tables but an alternative is to utilize these tables from a higher-level table. Instead of
indicating whether the Toddler leans left or right, a movement table will include actions such as turn right,
walk backward 10 steps, pivot left and walk forward 10 steps.

The second activity in this experiment uses this approach to move the Toddler in more complex paths than
the earlier experiments but first we take a look at how to determine if a table is part of one set or another.
This will allow the Movenent routine to determine whether a table is a basic set of movement commands or if
the table contains more complex commands. The Movenent routine can then process the commands
accordingly.

Activity #1: Which Table?

There are advantages to using high-level actions with the Toddler such as making a left turn versus low-level
actions such as leaning left and moving the left foot forward. Both are needed and prior examples have
shown how low level actions can be combined in tables to provide a higher level of abstraction. Taking this
approach to the next level requires a different set of tables whose elements reference the lower level tables.

Using two types of tables is possible using two different routines but there is an advantage to using a single
routine for both. This allows a program to freely mix the use of these two types of tables in the program. The
program in this activity shows how this can be done. The approach is then used in the next activity’'s program.

This program does not make the Toddler walk but it does use the BASIC Stamp to run the program. It uses the
BASIC Stamp editor’s DEBUG window to display the output generated by DEBUG statements in the program.
Most programmers familiar with the BASIC Stamp will already know about the DEBUG statement but check
out the BASIC Stamp Manual if you are not. Also, the serial cable will remain connected to the Toddler for this
experiment.

Advanced Robotics with the Toddler 1.0 - Page 59

Experiment #4: Coordinated Walking

This program assumes that two kinds of tables will be used with the program and that each type of table will
be in its own area of the program memory. There is no restriction that tables be adjacent, only that they be
above or below the boundary that is designated by the Basi cMovenent s label.

Table 4.1: Coordinated Walking Table Structure

Advanced Advanced tables are located
Movement before the Basi cMovenent
Tables label.
BasicMovement: Basic Advanced tables are located
Movement after the Basi cMbvenent
Tables label.

| Mainprogram |

The following program uses a Movenent routine that has the index of the table in the Mk variable. It uses the
DEBUG statement to output a string in the debug window on the PC that indicates whether index is for an
advanced or basic movement. In the next activity, the Movenent routine will be replaced by one that actually
interprets the tables to make the Toddler move.

B R = e e
' Toddl er Program 4.1: \Wich Tabl e
" {$STAW BS2}

' The following state tables are lists of nobvenent state nunbers.
' A xx indicates the end of a list.
' These are used with the Myvenent routine.

TL CON 0
TC CON 1
TR CON 2

Page 60 - Advanced Robotics with the Toddler 1.0

Experiment #4: Coordinated Walking

CON

3
4
5

255

These can be used with the Myvenent
The tabl es can contain Basic Myvenent Codes.

routine.

' Note: ALL novenent tables nust be in this section

LeftSem circle
Ri ght Semicircl e

Wal kFor war d3
Wal kFor war d8

bFi ni sh
bFor war d
bBackwar d
bLeft Turn
bRi ght Turn
bPi vot Lef t
bPi vot Ri ght

Basi cMovenent s

For war d
Backwar d

Left Turn
Ri ght Turn

Pi vot Left
Pi vot Ri ght

Fi ni sh

DATA
DATA

DATA
DATA

Used in Movenent tabl es.
Ref erenced bel ow usi ng LOOKUP st at enent .

CON

DATA
DATA

DATA
DATA

DATA
DATA

DATA

bLef t Turn,
bRi ght Turn,

bFor war d,
bFor war d,

XX
XX

bLef t Turn,
bRi ght Turn,

bFor war d,
bFor war d,

XX
XX

OO WNREO

For war d

TR,
TR,

TL,
TR,

TL,
TR,

TR,

SL,
SL,

SR,
SL,

SR,
SL,

SC,

These tables can contain Myvenent Support Codes.

TL,
TL,

TC,
TC,

TC,
TC,

TC,

SR,
SR,

SL,
SR,

SL,
SR,

XX

XX
XX

TL,
TR,

TR,
TL,

SR,
SL,

SR,
SL,

TR,
TL,

TC,
TC,

SL,
SR,

SL,
SR,

XX
XX

XX
XX

Advanced Robotics with the Toddler 1.0 - Page 61

Experiment #4: Coordinated Walking

Mai n_Program
Mk = LeftSemcircle
GOSUB Movenent

Mk = Wal kFor war d3
GOSUB Movenent

Mx = Pivot R ght
GOSUB Movenent

Mk = WAl kFor war d8
GOSUB Movenent

Mk = Finish
GOSUB Movenent
END

Movenent :
I F Mk < Basi cMovenents THEN Basi cMovenent Tabl e

debug hex Mk, " is an advanced novenent table",cr
RETURN

Basi cMovenent Tabl e:
debug hex Mk, " is a basic novenent table",cr
RETURN

This approach to memory partitioning takes into account that PBASIC allocates space for DATA statements in
the order that they appear in the program. Not all programming languages do this so the technique should
only be applied when the appropriate support is available. It is handy in this instance because other
approaches to differentiating data are more cumbersome. This approach can be prone to programmer errors
if the tables are not grouped properly but keeping the tables relatively close to each other in the program
text makes it easy to spot such problems.

Activity #2: Figure 8s and Square Dancing

Now we take a look at making the Toddler execute more complex movements using the dual table types
presented in Activity #1. One set of tables handles low-level actions such as tilting and leg movements. The
second set of tables handles higher-level actions such as turning a corner and walking in a large circle.

Page 62 - Advanced Robotics with the Toddler 1.0

Experiment #4: Coordinated Walking

In this Activity, the program makes the Toddler walk in a Figure 8 and a large square. The use of a high-level
action table allows easy creation of more complex movement sequences. In this case, the use of higher level
sequences like Lef t Semi ci r ¢l e cause the Toddler to execute a large number of basic foot movements.

The program implements a more sophisticated version of the Moverent routine than found in prior Activities.
In this case, the Mk variable can contain an index for either a basic or an advanced table. The Movenent

routine will execute the appropriate table. The decoding process is a bit complex so we have included DEBUG
statements to help present the execution process. The DEBUG statements are actually comments in the listing
but they can be changed by doing a “Replace All” in the editor from “ 'debug” to “debug”. The converse will
change the lines back to comments.

The DEBUG statements are only useful when the Toddler is connected to the PC since the display of
information is done on the PC. While it is possible to keep the Toddler connected to the PC while it is walking,
these more advanced movement sequences move the Toddler in large areas. A laptop or a long serial cable
may be necessary to handle these larger movement areas.

What we have found useful is to instead use the DEBUG version while running the Toddler with the power
switch in the download mode. In this case, the Toddler’s servos do not move but the program continues to
execute. The DEBUG statements show what the Toddler would be doing if the power switch was in the RUN
mode (Position 2).

When running in the download mode, the Toddler will continue to send pulses to the servos even though the
servos receive no power and hence do not rotate. The delay does slow down debug presentation though. It is
possible to add a RETURN statement immediately after the DoMovenent label to eliminate this thereby
making the debug process go faster. Just make sure to comment out or remove the RETURN statement or the
Toddle will not move.

Now for the code.

B [Tt @ Jmmmmmmmmmm e o e oo
' Toddl er Program 4.2: Advanced \Wal ki ng
' {$STAW BS2}

TiltServo CON 13 " Tilt servo on P12
Stri deServo CON 12 ' Stride servo on P13

MoveDel ay CON 25 ' in mcrcoseconds

Advanced Robotics with the Toddler 1.0 - Page 63

Experiment #4: Coordinated Walking

TiltStep

RightTilt
CenterTilt
LeftTilt

StrideSt ep

Ri ght Stri de
CenterStride
Left Stride

Fi gur eLoop
MovelLoop
MoveLooplLi m t

SubMbvelLoop
SubMbovelLoopLi m t

Pul ses
CurrentTilt
Current Stride
Newval ue

Dx

VK
Mk Cur r ent

Sx
SxCur r ent

VAR
VAR
VAR

VAR
VAR

VAR
VAR
VAR
VAR
VAR

VAR
VAR

VAR
VAR

10 ' TiltServo step size

620 "Tilt limts
750
880

10 ' StrideServo step size
650 ' Stride limts

750
850

Ni b
Byt e
Byt e

Loop for repeat novenents

Byt e
Byt e

Loop for repeat subnovenents

Wor d ' Pul se vari abl e
Wor d
Wor d
Wor d

Pul ses

Wor d
Wor d

Wor d
Wor d

' The following state tables are lists of novenent state nunbers.
' A xx indicates the end of a list.
' These are used with the Myvenent routine.

TL CON
TC CON
TR CON
SL CON
SC CON
SR CON

0
1
2

a b w

Page 64 - Advanced Robotics with the Toddler 1.0

Experiment #4: Coordinated Walking

XX CON 255

These can be used with the Myvenent routine.
The tabl es can contain Basic Myvenent Codes.

' Note: ALL novenent tables nust be in this section

LeftSem circle DATA 7, bLeftTurn, bLeftTurn,
Ri ght Semicircl e DATA 7, bRi ght Turn, bRi ght Turn,
Wal kFor war d3 DATA 3, bForward, xx

Wal kFor war d8 DATA 8, bForward, xx

Used in Movenent tabl es.
Ref erenced bel ow usi ng LOOKUP st at enent .

bFi ni sh CON 0
bFor war d CON 1
bBackwar d CON 2
bLeft Turn CON 3
bRi ght Turn CON 4
bPi vot Lef t CON 5
bPi vot Ri ght CON 6

These tables can contain Myvenent Support Codes.

Basi cMbvenent s CON For war d

For war d DATA 1, TR, SL, TL, SR, xx
Backwar d DATA 1, TR, SL, TL, SR, xx

Left Turn DATA 1, TL, SR, TC, SL, TL, SR
Ri ght Turn DATA 1, TR, SL, TC, SR, TR, SL,
Pi vot Lef t DATA 3, TL, SR, TC, SL, TR, SR,
Pi vot Ri ght DATA 3, TR SL, TC, SR TL, SL,
Fi ni sh DATA 1, TR, SC, TC, xx

Mai n_Program
GOSUB Reset CC

bFor war d,
bFor war d,

TR,
TL,

TC,
TC,

SL,
SR,

SL,
SR,

XX
XX

XX
XX

XX
XX

Advanced Robotics with the Toddler 1.0

- Page 65

Experiment #4: Coordinated Walking

' Make a Figure 8

FOR FigureLoop = 1 to 5
Mk = LeftSemcircle
GOSUB Movenent

Mk = Wl kFor war d3
GOSUB Movenent

Mk = RightSemicircle
GOSUB Movenent

Mk = Wal kFor war d3
GOSUB Movenent
NEXT

Make a bi g pol ygon

FOR FigureLoop = 1 to 5
Mx = Pivot R ght
GOSUB Movenent

Mk = WAl kFor war d8
GOSUB Movenent
NEXT

Mk = Finish

GOSUB Movenent
END

----- Moverent : Move feet using DATA table referenced by M -----

Input: Mk = novenent table index, table ends in xx
! Mk = subnovenent table index, table ends in xx
' Note: Al subnovnent tables cone after the movnment tables in this file.

Movemnent :
I F Mk < Basi cMbvenents THEN Set upMbvenent

MxCurrent = M ' setup to use subnovenent table
MoveLoopLimt = 1
GOTO St ar t Movenent

Set upMovenent :

READ Mk, MoveloopLi m t ' read novenent table repeat count
MxCurrent = M + 1

Page 66 - Advanced Robotics with the Toddler 1.0

Experiment #4: Coordinated Walking

St art Movenent :
FOR MovelLoop = 1 to MovelLoopLimt
Mk = MCurrent ' Mk = start of novenent table

'debug hex Mx, " Mvenent ", dec MovelLoop, of ", dec MovelLoopLimt,cr

I F Mk < Basi cMbvenents THEN Movenent Loop
' skip if novenent table

SxCurrent = M ' SxCurrent = subnovenent table index
GOTO St art SubMovenent ' enter mddle of |oop
Movenent Loop:
READ Mk, SxCurrent ' read next subrmovnent byte
M = MK + 1

I F SxCurrent = xx THEN Movenent Done
skip if end of Iist
"debug " ", dec SxCurrent, " novement",cr
L OOKUP
SxCurrent, [Fi ni sh, Forwar d, Backwar d, Left Tur n, Ri ght Tur n, Pi vot Left, Pi vot Ri ght], SxCurr ent
' | ookup subnovenent tabl e index
St art SubMovenent : ' start executing subnmovenent table
READ SxCurrent, SubMbvelLoopLi m t
' read subnovenent tabl e repeat count
SxCurrent = SxCurrent + 1

FOR SubMbvelLoop = 1 to SubMbvelLooplLi m t
Sx = SxCurrent

' debug " ", hex Sx, " subnoverment ", dec SubMdvelLoop, " of ", dec SubMovelLoopLinit,cr

SubMovenent Loop:
READ Sx, Dx ' read next subnovent action
SXx = Sx + 1

IF Dx = xx THEN SubMovenent Done
" skip if end of Iist
GOSUB DoMovenent ' execute movenent

GOTO SubMovenent Loop

SubMovenent Done:
NEXT
GOTO Mbvenent Loop

Movenent Done:
NEXT
RETURN

DoMovenent :
' debug " ", dec Dx, " action",cr
BRANCH Dx, [TiltLeft, TiltCenter, TiltRi ght, StrideLeft, StrideCenter, Stri deRi ght]
"will fall through if invalid index
RETURN

Advanced Robotics with the Toddler 1.0 - Page 67

Experiment #4: Coordinated Walking

---- Movenent routines can be called directly ----

TiltLeft:
Newval ue = LeftTilt
GOTO Movenent Til t

TiltCenter:
Newval ue = CenterTilt
GOTO Movenent Til t

TiltRi ght:
Newal ue = RightTilt

Movenment Ti l t :
FOR Pul ses = CurrentTilt TO Newval ue STEP Tilt Step
PULSOUT Tilt Servo, Pul ses
PULSQUT StrideServo, CurrentStride
PAUSE MbveDel ay
NEXT

CurrentTilt = Newal ue
RETURN

StrideLeft:
Newval ue = LeftStride
GOTO Movenent Stri de

StrideCenter:
NewVal ue = CenterStride
GOTO Movenent Stri de

Stri deRi ght:
Newval ue = RightStride

Movenent Stri de:
FOR Pul ses = CurrentStride TO Newval ue STEP Stri deStep
PULSOUT Tilt Servo, CurrentTilt
PULSOQUT StrideServo, Pulses
PAUSE MbveDel ay
NEXT

Current Stride = Newval ue

RETURN
B Move feet to initial center position -----
Reset CC.

CurrentTilt
Current Stride

CenterTilt
CenterStride

Page 68 - Advanced Robotics with the Toddler 1.0

Experiment #4: Coordinated Walking

FOR Pul ses = 1 TO 100 STEP Stri deStep
PULSOUT TiltServo, CenterTilt
PULSQUT StrideServo, CenterStride
PAUSE MbveDel ay

NEXT

DoRet ur n:

RETURN
The Mai n_Pr ogr amnow executes so the Toddler performs two large movements: a figure 8 and a square. The
Moverrent routine is called to execute high-level tables that include commands such as left turn. The
bLef t Tur n value is used in the table because the DATA statements only store bytes. These values are used
with a LOOKUP statement in the Movenent routine to select the appropriate low level table to use for basic
movements. One high-level table entry causes the Toddler to execute many low level movements.

The Moverent routine still handles low-level tables using the technique outlined in Activity #1. For example,

the Fi ni sh table uses only a few basic movements. If the Movement routine did not handle both types of
tables then either a low level routine would have to be called or a high level table would have to be created.

Advanced Robotics with the Toddler 1.0 - Page 69

Experiment #4: Coordinated Walking

Challenges

1. Achallenge in the Experiment #5 asked to extend the movement routine so it could handle repetitions of
subsections in a table as in.

Speci al Movenent DATA 4, TL, SR, TC, SL, xy
DATA 2. TR, SL, TL, SR xy
DATA 2. TL, SR TC, SL, xx

Provide this same type of facility for both types of movement tables.

2. Implement the prior challenge. Then reduce the multiple calls to Movement shown below

Mk = LeftSemcircle
GOSUB Movenent

Mk = Wal kFor war d3
GOSUB Movenent

Mk = RightSemicircle
GOSUB Movenent

Mk = Wal kFor war d3
GOSUB Movenent

to the following

Mx = Figure8
GOSUB Movenent

Hint: The Figure 8 table will be a combination of the four tables listed above.
3. Generate a set of symmetrical useful high level and low level movement tables. High level movements

might include TurnAroundLeft, TurnAroundRight, WalkForward1Foot, and WalkBackward1Foot. Low level
movements might include ReversePivotRight and ReversePivotLeft.

Page 70 - Advanced Robotics with the Toddler 1.0

Experiment #5: Following Light

The photoresistors in your kit can be used to make your Toddler
detect variations in light level. With some programming, your

Experiment #5: Toddler can be transformed into a photophile (a creature
Following Light attracted to light), or a photophobe (a creature that tries to
avoid light).

photoresistor is a light-dependent resistor (LDR) that covers the spectral sensitivity similar to that of the
human eye. The active elements of these photoresistors are made of Cadmium Sulfide (CdS). Light enters into
the semiconductor layer applied to a ceramic substrate and produces free charge carriers. A defined
electrical resistance is produced that is inversely proportional to the illumination intensity. In other words,
darkness produces high resistance, and high illumination produces very small amounts of resistance.

The specific photoresistors included in the Toddler kit are from EG&G Vactec (#VT935C). If you need
additional photoresistors they are available from Parallax’s Component Shop as well as from many electronic
component suppliers. See Appendix A: Toddler Parts Lists and Sources. The specifications of these
photoresistors are shown in Figure 5.1:

Figure 5.1: EG&G Vactec Photoresistor Specifications

Resistance [Ohms) F}F_.I'r]i- Response Time
10 L 2ASOK [ark Spectral Wanne @1 e
Response (s, typ.
Min | Typ. | Max. | Min | Sec. mm Rise {1-1/e)] Fall [1he)
MK | 290K JEK | M 10 S50 100 34 5

Luminance is a scientific name for the measurement of incident light. The unit of measurement of luminance is
commonly the "foot-candle” in the English system and the "lux" in the metric system. While using the
photoresistors we won't be concerned about lux levels, just whether or not luminance is higher or lower in
certain directions. The Toddler can be programmed to use the relative light intensity information to make
navigation decisions. For more information about light measurement with a microcontroller, take a look at
Earth Measurements Experiment #4, Light on Earth and Data Logging.

Advanced Robotics with the Toddler 1.0 - Page 71

Experiment #5: Following Light

Activity #1: Building and Testing Photosensitive Eyes

Figure 5.2 shows the capacitors and photoresistor used in this experiment along with their schematic
symbols. Both capacitors are nonpolar, meaning that terminals 1 and 2 as shown may be swapped without
affecting the circuit. In addition to the capacitors, you'll also need two (2) 220 ohm resistors (color code red,
red, brown).

2) Photoresistors

2) 0.1 capacitors

2) 0.01 nt capacitors

2) 220 ohm resistors (not pictured)
(misc.) jumper wires

(2)
(2)
(2)
(2)

Figure 5.2: Photoresistor and capacitor circuit symbols and parts.

o P

2

1 pF (/- :

1o

01 pF 4 ;
1

2

o— -

o—

Figure 5.3 shows the resistor/capacitor (RC) circuit for each photoresistor. A photoresistor is an analog
device. Its value varies continuously as luminance, another analog value, varies. The photoresistor’s resistance
is very low when it's light-sensitive surface is placed in direct sunlight. As the light level decreases, the
photoresistor’s resistance increases. In complete darkness, the photoresistor’s value can increase to more
than 1 M Ohm. Even through the photoresistor is analog, its response to light is nonlinear. This means if the
input source (luminance) varies at a constant rate, the photoresistor’s value does not necessarily vary at a
constant rate.

Page 72 - Advanced Robotics with the Toddler 1.0

Experiment #5: Following Light

Figure 5.3: Photoresistor Schematic and Pictorial

3 +av

1

1

0.01 wF 0.01 uF

P10

P15

et right
phota photo
restsiorn resistor

OF

6
oo

-P15 + - P14

“"Toddler”.....

Vdd Vin Vss

+- P11-P10

FT IR SET x4 RIGHT IR SET
- _V Rev A
)|> Gnd :
Red
P13 X g
(<] Gnd 'm| O
i\ & Q%ﬁ -
© P12 oot (00000 | e
00000| |[ooooo
> Sl Gnd Ooo00d| |[ooooo (:> MH
- 0ooog| |Doooo =
P2 0ooooo| |[0oooo|[™es
> pcnd 0oooo| Doooo |@e I
< Ml ooooo| |[ooooo | es
PO ooooo| |[ooooo|™ e 1 |
oooool jooooo (e =
ooooo ooooao]
Oooo0 0o0ooo

; Power I ; I ; ILI-AX ﬁ

www.parallaxinc.com
o8

+6Vdc - Reset

Advanced Robotics with the Toddler 1.0 - Page 73

Experiment #5: Following Light

Programming to Measure the Resistance

The circuit in Figure 5.3 was designed for use with the PBASIC RCTI ME command. This command can be used
with an RC circuit where one value, either R or C, varies while the other remains constant. The RCTI MVE
command lends itself to measuring the variable values because it takes advantage of a time varying property
of RC circuits.

For one of the RC circuits shown in Figure 5.3, the first step in setting up the RCTI ME measurement is
charging the lower plate of the capacitor to 5 V. Setting the /O pin connected to the lower capacitor plate by
the 220 Ohm resistor high for a few ms takes care of this. Next, the RCTI ME command can be used to take
the measurement of the time it takes the lower plate to discharge from 5to 1.4 V. Why 1.4 V? Because that's
the BASIC Stamp I/O pin’s threshold voltage. When the voltage at an 1/0O pin set to input is above 1.4 V, the
value in the input register bit connected to that I/0 pin is “1.” When the voltage is below 1.4 V, the value in the
input register bit is “0.”

In this circuit RCTI ME measures the time it takes the voltage at the lower plate of the capacitor in one of the
Figure 5.3 RC circuits to drop from 5 to 1.4 V. This discharge is directly proportional to the photoresistor’s
resistance. Since this resistance varies with luminance (exposure to varying levels of light), so does the time.
By measuring this time, relative light exposure can be inferred. See the BASIC Stamp Manual for a detailed
discussion of RCTI ME.

The RCTI ME command changes the 1/0 pin from output to input. As soon as the I/O pin becomes an input, the
voltage at the lower plate of the capacitor starts to fall according to the time equation just discussed. The
BASIC Stamp starts counting in 2 us increments until the voltage at the capacitor’s lower plate drops below
14V.

v" For Best Results: Eliminate direct sunlight; it's too bright for the photoresistor circuits.
TIP They perform best in lower light levels while seeking indirect natural light.

Run Program Listing 5.1. It demonstrates how to use the RCTI ME command to read the photoresistors. This
program makes use of the Debug Terminal, so leave the serial cable connected to the Toddler board while
Program is running.

Page 74 - Advanced Robotics with the Toddler 1.0

Experiment #5: Following Light

Toddl er Program 5. 1: Photoresistor RCTi me Displ ay
{$St anp bs2}

BEEEE Declarations --------------

| ef t _phot o var word
ri ght _photo var word

left_pin con 10
right_pin con 15

BEEEE Initialization ------------
debug cls

BEEEE Main Routine --------------

Measure RC tine for |eft photoresistor

high left_pin
pause 3
rctine left_pin,1,1eft_photo

Measure RC tine for right photoresistor
hi gh right_pin

pause 3
rctine right_pin, 1, right_photo

Di splay RC tine neasurenents using Debug Term nal

Stanp Directive.

For storing neasured RC tines of
the left & right photoresistors

Open and cl ear a Debug Term nal

Set detector to output-high
Pause for 3 ns.
Measure RC time on | eft detector

Set detector to output-high
Pause for 3 ns.
Measure RC tine on right detector

debug hone, "L ", dec5 left_photo, " R ", dec5 right_photo

goto main

How The Photoresistor Display Works

Two word variables, | ef t _phot o and ri ght _phot o are declared for storing the RC time values of the left
and right photoresistors. The mai n routine then measures and displays the RC times for each RC circuit. The
code for reading the right RC circuit is shown below. First, the I/0O pin | ef t _pi n is set to output-high. Next,
a 3 ms pause allows enough time for the capacitor to charge. After 3 ms, the lower plate of the capacitor is
close enough to 5V and is ready for the r ct i me measurement. The r ct i me command measures the RC time
on I/O pin ri ght _pi n, with a beginning state of “1” (5 V), and stores the result in the ri ght _phot o variable.

Advanced Robotics with the Toddler 1.0 - Page 75

Experiment #5: Following Light

Remember, the value stored in ri ght _phot o is a number. This number tells how many 2 us increments
passed before the voltage at the lower plate of the capacitor passed below the I/0 pin's 1.4 V threshold.

high right_pin
pause 3
rctime right_pin,1,right_photo

Try replacing one of the 0.01 nt capacitors with a 0.1 nt capacitor. Which circuit fares better in bright light,

the one with the larger (0.1 n¥) or the one with the smaller (0.01 n¥) capacitor? What is the effect as the
surroundings get darker and darker? Do you notice any symptoms that would indicate that one or the other
capacitor would work better in a darker environment?

Make sure to restore your circuit to its original state before moving on to the next activity.

Page 76 - Advanced Robotics with the Toddler 1.0

Experiment #5: Following Light

Activity #2: A Light Compass

If you focus a flashlight beam in front of the Toddler, the circuit and programming techniques just discussed
can be used to make the Toddler turn so that it's pointing at the flashlight beam. Make sure the
photoresistors are pointed so that they can make a light comparison. Aside from each being pointed 45°
outward from the center-line of the Toddler, they also should be oriented so they are pointing 45° downward
from horizontal. In other words, point the faces of the photoresistors down toward the table top. Then, use
a bright flashlight to make the Toddler track the direction of the light.

Programming the Toddler to Point at the Light

Getting the Toddler to track a light source is a matter of programming it to compare the value measured at
each photoresistor. Remember that as the light gets dimmer, the photoresistor’s value increases. So, if the
photoresistor value on the right is larger than that of the photoresistor on the left, it means it's brighter on
the left. Given this situation, the Toddler should turn left. On the other hand, if the rcti v of the
photoresistor on the left is larger than that of the photoresistor on the right, the right side is brighter and the
Toddler should turn right.

To keep the Toddler from changing directions too often, a parameter for deadband is introduced. Deadband
is a range of values wherein the system makes no attempt at correction. If the numbers go above or below
the deadband, then the system corrects accordingly. The most convenient way to measure for deadband is to
subtract the left RCTi me from the right r ct i me, or visa versa, then take the absolute value. If this absolute
value is within the deadband limits, then do nothing; if otherwise, program an appropriate adjustment.

o Enter and run Program Listing 5.2.

a Shine a bright flashlight in front of the Toddler. When you move the flashlight, the Toddler should rotate
S0 that it’s pointing at the flashlight beam.

0 Instead of using a flashlight, use your hand to cast a shadow over one of the photoresistors. The Toddler
should rotate away from the shadow.

' Toddl er Program 5. 2: Light Conpass

" {$Stanp bs2}

TiltServo CON 13
Stri deServo CON 12

' Stanp Directive.

" Tilt servo on P12
' Stride servo on P13

Advanced Robotics with the Toddler 1.0 - Page 77

Experiment #5: Following Light

MoveDel ay
TiltStep
RightTilt

CenterTilt
LeftTilt

StrideSt ep

Ri ght Stri de
CenterStride
Left Stride

Fi gur eLoop
MovelLoop
MoveLoopLi m t

SubMbvelLoop

SubMbovelLoopLi m t

Pul ses
CurrentTilt
Current Stride
Newval ue

Dx

VK
Mk Cur r ent

Sx
SxCur r ent

VAR
VAR
VAR

VAR
VAR

VAR
VAR
VAR
VAR
VAR

VAR
VAR

VAR
VAR

15 ' in mcrcoseconds
5 ' TiltServo step size
620 "Tilt limts

750
880

5 ' StrideServo step size

650 ' Stride limts
750
850

Ni b
Byt e
Byt e

Loop for repeat novenents

Byt e
Byt e

Loop for repeat subnovenents

Wor d ' Pul se variabl e
Wor d
Wor d
Wor d

Pul ses

Wor d
Wor d

Wor d
Wor d

' The following state tables are lists of nobvenent state nunbers.
' A xx indicates the end of a list.
' These are used with the Myvenent routine.

CON
CON

CON

0
1
2

Page 78 - Advanced Robotics with the Toddler 1.0

Experiment #5: Following Light

SR

' These can be used with the Myvenent

CON

CON

5

255

routine.

' The tabl es can contain Basic Myvenent Codes.

' Note: ALL novenent tables nust

LeftSem circle

Ri ght Semi ci rcl e DATA

Wal kFor war d3
Wal kFor war d8

DATA

DATA
DATA

Used in Movenent tables.

be in this section

bLef t Turn,
bRi ght Turn,

bFor war d,
bFor war d,

' Referenced bel ow using LOOKUP st at enent .

bFi ni sh
bFor war d
bBackwar d
bLeft Turn
bRi ght Turn
bPi vot Lef t
bPi vot Ri ght

CON

Moverent Tabl es]

0

O wWN PP

XX
XX

bLef t Turn,

bForward, xx

bR ght Turn, bForward, xx

' These tables can contain Myvenent Support Codes.

Basi cMovenent s

For war d
Backwar d

Left Turn
Ri ght Turn

Pi vot Left
Pi vot Ri ght

Fi ni sh

CON

DATA
DATA

DATA
DATA

DATA
DATA

DATA

..... Phot odet ect or

For

Decl ar ati ons

war d

TR, SL,
TR, SR,

TL, SR,
TR, SL,

TL, SR,
TR, SL,

TR, SC,

TL,
TL,

TC,
TC,

TC,
TC,

TC,

SR,
SL,

SL,
SR,

SL,
SR,

XX

XX
XX

XX
XX

XX
XX

Advanced Robotics with the Toddler 1.0 - Page 79

Experiment #5: Following Light

| ef t _phot o var word ' For storing neasured RC tinmes of
ri ght _photo var word ' the left & right photoresistors.
left_pin con 10

right_pin con 15

BEEEE Initialization ------------

out put 2 ' Set P2 to output.
freqout 2, 2000, 3000 ' Declare a variable for counting.
GOSUB Reset CC " Initialize feet

BEEEE Main Routine --------------

Measure RC tine for |eft photoresistor.

high left_pin ' Set detector to output-high.
pause 3 ' Pause for 3 ns.
rctine left_pin,1,1eft_photo ' Measure RC time on left detector.

Measure RC tine for right photoresistor.

hi gh right_pin ' Set detector to output-high.
pause 3 ' Pause for 3 ns.
rctine right_pin, 1, right_photo ' Measure RC time on right detector.

Take the difference between right_photo and | eft_photo, then deci de what to do.
DEBUG hone, "Left =", dec left_photo, " Right = ",dec right_photo,cr

if abs(left_photo-right_photo) < 4 then main
if left_photo > right_photo then turn_right
if left_photo < right_photo then turn_|eft

BEEEE Navi gati on Routines -------

Turn_l eft: " turn left towards |ight
Mk = Pivot Left
GOSUB Movenent
goto main ' go back to main routine.

Turn_right: " turn right towards |ight
Mx = Pivot R ght
GOSUB Movenent
goto main ' go back to main routine.

Page 80 - Advanced Robotics with the Toddler 1.0

Experiment #5: Following Light

Input: Mk = novenent table index, table ends in xx
or
' Mx = subnovenent table index, table ends in xx

' Note: Al subnovnent tables cone after the movnment tables in this file.

Movement :
I F Mk < Basi cMbvenents THEN Set upMbvenent

MxCurrent = M ' setup to use subnovenent table
MoveLoopLimt = 1
GOTO St ar t Movenent

Set upMovenent :
READ Mk, MoveloopLi m t ' read novenent table repeat count
MkCurrent = Mk + 1
St art Movenent :
FOR MovelLoop = 1 to MovelLoopLimt
Mx = MkCurrent ' Mk = start of nopvenent table

' debug hex Mx, " Movenent ", dec MoveLoop, " of ", dec MovelLoopLint,cr

I F Mk < Basi cMbvenents THEN Movenent Loop
' skip if novenent table

SxCurrent = M ' SxCurrent = subnovenent table index
GOTO St art SubMovenent ' enter mddle of |oop
Movenent Loop:
READ Mk, SxCurrent ' read next subnmovnent byte
M = MK + 1

I F SxCurrent = xx THEN Movenent Done
skip if end of Iist
"debug " ", dec SxCurrent, " novement",cr
L OOKUP
SxCurrent, [Fi ni sh, Forwar d, Backwar d, Left Tur n, Ri ght Tur n, Pi vot Left, Pi vot Ri ght], SxCurr ent
" | ookup subnovenent tabl e index
St art SubMovenent : ' start executing subnmovenent table
READ SxCurrent, SubMbvelLooplLi m t
' read subnovenent tabl e repeat count
SxCurrent = SxCurrent + 1

FOR SubMbvelLoop = 1 to SubMbvelLoopLi m t
Sx = SxCurrent

' debug " , hex Sx, " subnovenent ", dec SubMoveloop,

of ", dec SubMoveloopLint,cr
SubMovenent Loop:

READ Sx, Dx ' read next subnovent action

SXx = Sx + 1

IF Dx = xx THEN SubMovenent Done

Advanced Robotics with the Toddler 1.0 - Page 81

Experiment #5: Following Light

skip if end of Iist
GOSUB DoMbvenent ' execute novenent
GOTO SubMovenent Loop

SubMovenent Done:
NEXT
I F Mk < Basi cMbvenents THEN Movenent Loop

Movenent Done:
NEXT
RETURN

DoMovenent :
' debug " ", dec Dx, " action",cr
BRANCH Dx, [TiltLeft, TiltCenter, Til tRi ght, StrideLeft, StrideCenter, Stri deRi ght]
"will fall through if invalid index
RETURN

' ---- Movenent routines can be called directly ----

TiltLeft:
Newval ue = LeftTilt
GOTO Movenent Til t

TiltCenter:
Newval ue = CenterTilt
GOTO Movenent Til t

TiltRi ght:
Newal ue = RightTilt

Movenment Ti l t:
FOR Pul ses = CurrentTilt TO Newval ue STEP Tilt Step
PULSOUT Tilt Servo, Pul ses
PULSQUT StrideServo, CurrentStride
PAUSE MbveDel ay
NEXT

CurrentTilt = Newal ue
RETURN

StrideLeft:
NewVal ue = LeftStride
GOTO Movenent Stri de

StrideCenter:
NewVal ue = CenterStride
GOTO Movenent Stri de

Stri deRi ght:
NewVal ue = RightStride

Page 82 - Advanced Robotics with the Toddler 1.0

Experiment #5: Following Light

Movenent Stri de:
FOR Pul ses = CurrentStride TO Newval ue STEP Stri deStep
PULSOUT Tilt Servo, CurrentTilt
PULSOQUT StrideServo, Pulses
PAUSE MbveDel ay
NEXT

Current Stride = Newval ue

RETURN

----- Move feet to initial center position -----
Reset CC.

CurrentTilt
Current Stride

CenterTilt
CenterStride

FOR Pul ses = 1 TO 100 STEP Stri deStep
PULSOUT TiltServo, CenterTilt
PULSQUT StrideServo, CenterStride
PAUSE MbveDel ay

NEXT

DoRet ur n:
RETURN

How the Light Compass Works

Program 5.2 takes RC time measurements and first checks to see if the difference between the values
returned by the r ct i me commands fall in the deadband using the command:

if abs(left_photo - right_photo) < 2 then nain

If the difference between RC times is within the deadband, the program jumps to the mai n: label. If the
measured difference in RC times is not within the deadband, two | F. .. THEN statements decide which
routinetocall,turn_left orturn_right.

if left_photo > right_photo then turn_right
if left_photo < right_photo then turn_|left

These routines use the movement routines initially presented in the prior chapter. The Toddler can make
smaller turns.

Advanced Robotics with the Toddler 1.0 - Page 83

Experiment #5: Following Light

Your Turn

In a darker area, not only will the photoresistor values be larger, so will the difference between them. You
may have to increase the deadband in low ambient light to detune the Toddler to small and changing
variations in light. The lower the light levels, the less you need the PAUSE statements. If the Toddler’s
performance starts to decrease, it’s probably because the time between pulses has exceeded 40 ms. The first
line of defense for this problem is to reduce the PAUSE Peri od in each subroutine to zero. The second line
of defense is to check photoresistors during alternate pulses. That way, after the first pulse, the right
photoresistor could be checked. Then, after the second pulse, the left photoresistor could be checked. You
can try your hand at developing code that does this in the Challenges section.

The deadband value is currently set to “2” in the expression:
i f abs(left_photo-right_photo) < 2 then main
o Experiment with different ambient light levels and their effect on deadband by trying this experiment in
lighter and darker areas. In lighter areas, the deadband value can be made smaller, even zero. In darker

areas, the deadband value should be increased.

o Swap the conditions in the second and third i f. ..t hen statement in Program 5.2. Then re-run the
program. Now your Toddler points away from the light.

Activity #3: Following The Light

Programming the Toddler to follow light requires that only a few modifications to Program Listing 5.2 be
made. The main change is that measurements within the deadband resulted in no motion in Program Listing
5.2. In Program Listing 5.3, when the difference between RC times falls within the deadband, it results in
forward motion. Let's see how it works.

' Toddl er Program 5. 3: Foll ow The Li ght
" {$Stanp bs2} ' Stanp Directive.

TiltServo CON 13 " Tilt servo on P12
Stri deServo CON 12 ' Stride servo on P13

MoveDel ay CON 25 ' in mcrcoseconds

TiltStep CON 10 ' TiltServo step size

Page 84 - Advanced Robotics with the Toddler 1.0

Experiment #5: Following Light

RightTilt
CenterTilt
LeftTilt

StrideSt ep

Ri ght Stri de
CenterStride
Left Stride

Fi gur eLoop
MovelLoop
MoveLooplLi m t

SubMbvelLoop
SubMbovelLoopLi m t

Pul ses
CurrentTilt
Current Stride
Newval ue

Dx

VK
Mk Cur r ent

Sx
SxCur r ent

TL CON
TC CON
TR CON
SL CON
SC CON
SR CON
XX CON

VAR
VAR
VAR

VAR
VAR

VAR
VAR
VAR
VAR
VAR

VAR
VAR

VAR
VAR

0
1
2
3
4
5

255

620 "Tilt limts
750
880

10 ' StrideServo step size
650 ' Stride limts

750
850

Ni b
Byt e
Byt e

Loop for repeat novenents

Byt e
Byt e

Loop for repeat subnovenents

Wor d ' Pul se vari abl e
Wor d
Wor d
Wor d

Pul ses

Wor d
Wor d

Wor d
Wor d

The following state tables are lists of nobvenent state nunbers.
A xx indicates the end of a list.
These are used with the Movenent routine.

Advanced Robotics with the Toddler 1.0 - Page 85

Experiment #5: Following Light

These can be used with the Moyvenent routine.
The tabl es can contain Basic Myvenent Codes.

' Note: ALL novenent tables nust be in this section

LeftSem circle DATA 7, bLeftTurn, bLeftTurn, bForward, xx
Ri ght Semicircl e DATA 7, bRi ght Turn, bRi ghtTurn, bForward, xx
Wal kFor war d3 DATA 3, bForward, xx
Wal kFor war d8 DATA 8, bForward, xx

Used in Movenent tabl es.
Ref erenced bel ow usi ng LOOKUP st at enent .

bFi ni sh CON 0
bFor war d CON 1
bBackwar d CON 2
bLeft Turn CON 3
bRi ght Turn CON 4
bPi vot Lef t CON 5
bPi vot Ri ght CON 6

These tables can contain Myvenent Support Codes.

Basi cMovenent s CON For war d

For war d DATA 1, TR, SL, TL, SR, xx

Backwar d DATA 1, TR, SL, TL, SR, xx

Left Turn DATA 1, TL, SR, TC, SL, TL, SR TR, SL, xx
Ri ght Turn DATA 1, TR, SL, TC, SR, TR, SL, TL, SR xx
Pi vot Lef t DATA 3, TL, SR, TC, SL, TR, SR, TC, SL, xx
Pi vot Ri ght DATA 3, TR SL, TC, SR TL, SL, TC, SR, xx
Fi ni sh DATA 1, TR, SC, TC, xx

----- Phot odet ect or Declarations --------------

| ef t _phot o var word ' For storing neasured RC times of
ri ght _photo var word ' the left & right photoresistors.
left_pin con 10
right_pin con 15

Page 86 - Advanced Robotics with the Toddler 1.0

Experiment #5: Following Light

BEEEE Initialization ------------

out put 2 ' Set P2 to output.

freqout 2, 2000, 3000 ' Declare a variable for counting.
low 12 ' Set P12 and 13 to output-I|ow.

I ow 13

GOSUB Reset CC " Initialize feet

BEEEE Main Routine --------------

mai n
Measure RC tine for |eft photoresistor. ;
high left_pin ' Set detector to output-high.
pause 3 ' Pause for 3 ns.
rctine left_pin,1,1eft_photo ' Measure RC time on left detector.

Measure RC tine for right photoresistor.

hi gh right_pin ' Set detector to output-high.
pause 3 ' Pause for 3 ns.
rctine right_pin, 1, right_photo ' Measure RC time on right detector.

Take the difference between right_photo and | eft_photo, then deci de what to do.
if abs(left_photo-right_photo) > 8 then check_dir

Check if difference between RC tinmes is within the deadband, 2 in this case.
If yes, then forward. |If no then skip to check_dir subroutine.

wal k_f or war d:
Mx = Forward
GOSUB Movenent
goto main

Junp to either right_turn or left_turn depending on which RCtinme is |larger.
check_dir:
if left_photo > right_photo then turn_right
if left_photo < right_photo then turn_|eft
BEEEE Navi gati on Routines -------
turn_left: " turn left towards |ight
Mk = Pivot Left

GOSUB Movenent
goto main ' go back to main routine.

Advanced Robotics with the Toddler 1.0 - Page 87

Experiment #5: Following Light

Turn_right:
Mx = Pivot R ght
GOSUB Movenent
goto main

turn right towards |ight

go back to main routine.

S

e
c
=
S
|

= novenent table index, table ends in xx
! Mk = subnovenent table index, table ends in xx
' Note: Al subnovnent tables cone after the movnment tables in this file.

Movemnent :
I F Mk < Basi cMbvenents THEN Set upMbvenent

MxCurrent = M ' setup to use subnovenent table
MoveLoopLimt = 1
GOTO St ar t Movenent

Set upMovenent :
READ Mk, MoveloopLi m t ' read novenent table repeat count
MxCurrent = M + 1

St art Movenent :
FOR MovelLoop = 1 to MovelLoopLimt
Mk = MCurrent ' Mk = start of novenent table

'debug hex Mx, " Mvenent ", dec Moveloop, of ", dec MovelLoopLimt,cr

I F Mk < Basi cMbvenents THEN Movenent Loop
skip if novenent table

SxCurrent = M ' SxCurrent = subnovenent table index
GOTO St art SubMovenent ' enter mddle of |oop
Movenent Loop:
READ Mk, SxCurrent ' read next subrmovnent byte
M = MK + 1

I F SxCurrent = xx THEN Movenent Done
skip if end of Iist
"debug " ", dec SxCurrent, " novement",cr
L OOKUP
SxCurrent, [Fi ni sh, Forwar d, Backwar d, Left Tur n, Ri ght Tur n, Pi vot Left, Pi vot Ri ght], SxCurr ent
" | ookup subnovenent tabl e index
St art SubMovenent : ' start executing subnmovenent table
READ SxCurrent, SubMbvelLooplLi m t
' read subnovenent tabl e repeat count
SxCurrent = SxCurrent + 1

FOR SubMbvelLoop = 1 to SubMbvelLooplLi m t

Page 88 - Advanced Robotics with the Toddler 1.0

Experiment #5: Following Light

Sx = SxCurrent

' debug " ", hex Sx, "
SubMovenent Loop:
READ Sx, Dx
Sx = Sx + 1

IF Dx = xx THEN SubMovenent Done

GOSUB DoMovenent
GOTO SubMovenent Loop

SubMovenent Done:
NEXT

subnovenrent ", dec SubMdveloop,

of ", dec SubMovelLoopLint,cr

' read next subnovent action

" skip if end of Iist
' execute movenent

I F Mk < Basi cMbvenents THEN Movenent Loop

Movenent Done:
NEXT
RETURN

DoMovenent :
' debug " ", dec Dx, " action",cr

BRANCH Dx, [TiltLeft, TiltCenter, TiltRi ght, StrideLeft, StrideCenter, Stri deRi ght]

RETURN

TiltLeft:
Newval ue = LeftTilt
GOTO Movenent Til t

TiltCenter:
Newval ue = CenterTilt
GOTO Movenent Til t

TiltRi ght:
Newal ue = RightTilt

Movenment Ti l t:

"will fall through if invalid index

---- Movenent routines can be called directly ----

FOR Pul ses = CurrentTilt TO Newval ue STEP Tilt Step

PULSOUT Tilt Servo, Pul ses
PULSQUT StrideServo, CurrentStride
PAUSE MbveDel ay

NEXT

CurrentTilt = Newal ue
RETURN

StrideLeft:

Advanced Robotics with the Toddler 1.0 - Page 89

Experiment #5: Following Light

Newval ue = LeftStride
GOTO Movenent Stri de

StrideCenter:
NewVal ue = CenterStride
GOTO Movenent Stri de

Stri deRi ght:
Newval ue = Right Stride

Movenent Stri de:
FOR Pul ses = CurrentStride TO Newval ue STEP Stri deStep
PULSOUT Tilt Servo, CurrentTilt
PULSOQUT StrideServo, Pulses
PAUSE MbveDel ay
NEXT

Current Stride = Newval ue

RETURN

----- Move feet to initial center position -----
Reset CC.

CurrentTilt
Current Stride

CenterTilt
CenterStride

FOR Pul ses = 1 TO 100 STEP Stri deStep
PULSOUT TiltServo, CenterTilt
PULSQUT StrideServo, CenterStride
PAUSE MbveDel ay

NEXT

DoRet ur n:
RETURN

How the Light Follower Program Works

As in the previous program, the first | F. . . THEN statement tests for a difference in RC time measurements
within the deadband. This statement has been modified so that it skips the wal k_f or war d routine if the
difference between RC times falls outside the deadband. On the other hand, if the difference in RC times is
within the deadband, the forward pulse is executed. After the forward pulse, the program is directed back to
mai n and the RC times are checked again.

i f abs(left_photo-right_photo) > 2 then check_dir

wal k_f orwar d:
Mk = Forward

Page 90 - Advanced Robotics with the Toddler 1.0

Experiment #5: Following Light

GOSUB Movenent
goto main

If the difference between RC times is not within the deadband, the program skips to the Check_dir label.
The I F. . . THEN statements following the Check_di r label are used to decide whether to apply a pulse to the
left or a pulse to the right depending on the inequality of the ri ght _phot o and | eft _phot o values. In this
way, the program either applies a single forward pulse or a single turn pulse each time the photoresistors are
checked.

check_dir:

if left_photo > right_photo then turn_right
if left_photo < right_photo then turn_|eft

Advanced Robotics with the Toddler 1.0 - Page 91

Experiment #5: Following Light

Challenges

1. Repeat the previous Your Turn exercise. You can now lead your Toddler around with a flashlight.

2. Instead of pointing the photoresistors at the surface directly in front of the Toddler, point them upward
and outward. With the photoresistors adjusted this way, the Toddler will roam on the floor and try to
always find the brightest place.

3. Depending on the luminance gradient, you may have to increase the deadband to smooth out the
Toddler’s light roaming. Alternatively, the deadband may need to be decreased to make it more
responsive to seeking out the brighter areas.

Page 92 - Advanced Robotics with the Toddler 1.0

Experiment #6: Object Avoidance with Infrared

Infrared

Using Infrared Headlights to See the Road

Experiment #6: Object
Avoidance with

Today's hottest products seem to have one thing in
common: wireless communication. Personal organizers
beam data into desktop computers, and wireless remotes
let us channel surf. With a few inexpensive and widely

available parts the BASIC Stamp can also use an infrared LED and detector to detect objects to the front and

side of your traveling Toddler.

Infrared?

Infra means below, so Infra-red is light
(or electromagnetic radiation) that has
lower frequency, or longer wavelength
than red light. Our IR LED and
detector work at 980 nm. (nanometers)
which is considered near infrared.
Night-vision ~ goggles and IR
temperature sensing use far infrared
wavelengths of 2000-10,000 nm.,,
depending on the application.

Approximate
Color Wavelength
Violet 400 nm
Blue 470
Green 565
Yellow 590
Orange 630
Red 780
Near infra-red 800-1000
Infra-red 1000-2000

Far infra-red 2000-10,000nm

Detecting obstacles doesn’t require anything as sophisticated as machine
vision. A much simpler system will suffice. Some robots use RADAR or
SONAR (sometimes called SODAR when used in air instead of water). An
even simpler system is to use infrared light to illuminate the robot’s path
and determine when the light reflects off an object. Thanks to the
proliferation of infrared (IR) remote controls, IR illuminators and
detectors are easily available and inexpensive.

The Toddler infrared object detection scheme has a variety of uses. The
Toddler can use infrared to detect objects without bumping into them. As
with the photoresistors, infrared can be used to detect the difference
between black and white for line following. Infrared can also be used to
determine the distance of an object from the Toddler. The Toddler can
use this information to follow objects at a fixed distance, or detect and
avoid high ledges.

Infrared Headlights

The infrared object detection system we'll build on the Toddler is like a
car's headlights in several respects. When the light from a car’s headlights
reflects off obstacles, your eyes detect the obstacles and your brain
processes them and makes your body guide the car accordingly. The
Toddler uses infrared LEDs for headlights. They emit infrared, and in some
cases, the infrared reflects off objects, and bounces back in the direction

of the Toddler. The eyes of the Toddler are the infrared detectors. The infrared detectors send signals to the
BASIC Stamp indicating whether or not they detect infrared reflected off an object. The brain of the Toddler,
the BASIC Stamp, makes decisions and operates the servo motors based on this input.

Advanced Robotics with the Toddler 1.0 - Page 93

Experiment #6: Object Avoidance with Infrared

The IR detectors have built-in optical filters that allow very little light except the 980 nm. infrared that we
want to detect onto its internal photodiode sensor. The infrared detector also has an electronic filter that
only allows signals around 38.5 kHz to pass through. In other words, the detector is only looking for infrared
flashed on and off at 38,500 times per second. This prevents interference from common IR interference
sources such as sunlight and indoor lighting. Sunlight is DC interference (0 Hz), and house lighting tends to
flash on and off at either 100 or 120 Hz, depending on the main power source in the country where you
reside. Since 120 Hz is way outside the electronic filter’s 38.5 kHz band pass frequency, it is, for all practical
purposes, completely ignored by the IR detectors.

The FREQOUT Trick

Since the IR detectors only see IR signals in the neighborhood of 38.5 kHz, the IR LEDs have to be flashed on
and off at that frequency. A 555 timer can be used for this purpose, but the 555 timer circuit is more complex
and less functional than the circuit we will use in this and the next chapter. For example, the method of IR
detection introduced here can be used for distance detection; whereas, the 555 timer would need additional
hardware to do distance detection.

A pair of Toddler enthusiasts found an interesting trick that made the 555 timer scheme unnecessary. This
scheme uses the FREQOUT command without the RC filter that's normally used to smooth the signal into a
sine-wave. Even though the highest frequency FREQOUT is designed to transmit is 32768 Hz, the unfiltered
FREQOUT output contains a harmonic with useful properties for a 38.5 kHz IR detector. More useful still is
the fact that you can use a command such as FREQOUT Pin, reriod, 38500 to send a 38.5 kHz harmonic
that the IR detector will detect.

Figure 6.1 shows (a) the signal sent by the command FREQOUT Pin, Period, 27036. Tuned electronic
receivers, such as the IR detectors we'll be using, can detect components of this signal that are called
harmonics. The FREQOUT signal’s two dominant low frequency harmonics are shown in Figures 6.1 (b) and (c).
Figure 6.1 (b) shows the fundamental harmonic, and Figure 6.1 (c) shows the third harmonic. These harmonics
are actually components of the unfiltered FREQOUT pulses shown in Figure 6.1 (a). The third harmonic shown
in Figure 6.1 (c) can be controlled directly by entering commands such as FREQOUT Pin, Period, 38500
(instead of 27036) for 38.5 kHz, or FREQOUT Pin, Period, 40000 for 40 kHz, etc.

Page 94 - Advanced Robotics with the Toddler 1.0

Experiment #6: Object Avoidance with Infrared

Figure 6.1: FREQOUT Example Properties

Volts, V
Volts, V
+1.25
+5 T M T o M P
- 1-25J 0 Time,us 37(h)
(b) 27036 Hz fundamental harmonic.
+ 1.25‘{
0 \:
0 } —— } } J S
0 Time, us 37 S1251 g Time, us 37
Figure 6.2: (a) Unfiltered freqout pulses sent by f r eqout (c) 38500 Hz third harmonic

pin, period, 27036

Even though the “freqout” trick works, there is an additional problem. The BASIC Stamp does not multitask.
The reason this is a problem is because the IR detector only sends the low signal indicating that it has
detected an object while it is receiving the 38.5 kHz IR. Otherwise, it sends a high signal. Fortunately, it takes
the detector long enough to rebound from its low output state that the BASIC Stamp can capture the value.
The reason that the detector’s output takes so long to rebound is related to its tendency toward slower
responses when it receives a signal with unequal high and low times, of which the signal in Figure 5.2 (a) has
many.

Activity #1: Building and Testing the New IR Transmitter/Detector

The circuit requires just a few parts:

1) Piezoelectric speaker
2) Shrink wrapped IR LEDs
2) IR detectors

isc) wires

Figure 6.2 shows the part schematic and pictorials. Figure 6.3 is the schematic. Build this circuit on your
Toddler board. Note that the 220 ohm resistors are already built into the Toddler PCB; just plug in the
infrared LEDs and your Toddler will be ready.

Advanced Robotics with the Toddler 1.0 - Page 95

Experiment #6: Object Avoidance with Infrared

Figure 6.2: Infrared LED and Receiver

anli AP

3
1
IR
LED § 1 \
2 2 Short
Leg

Figure 6.3: Infrared Detector Schematic
Note: the 220 ohm resistors are built into the Toddler PCB

Left Infrared Circuit Right Infrared Circuit

220 Ohm 220 Ohm

P10 P15
Vvdd R vdd R
| LED LED
PllD—-ED P14 J_
Vgs

Vss Vss Vss

P2 Piezospeaker

Page 96 - Advanced Robotics with the Toddler 1.0

Experiment #6: Object Avoidance with Infrared

Figure 6.4: Finished Infrared Circuit on Toddler

One IR pair (IR LED and detector) is mounted on each corner of the Toddler breadboard.

Testing the IR Pairs

The key to making each IR pair work is to send 1 ms of unfiltered 38.5 kHz FREQoUT harmonic followed
immediately by testing the signal sent by the IR detector and saving its output value. The IR detector’s normal
output state when it sees no IR signal is high. When the IR detector sees the 38500 Hz harmonic sent by the IR
LED, it's output will drop from high to low. Of course, if the IR does not reflect off an object, the IR detector’s
output simply stays high. Program 6.1 shows an example of this method of reading the detectors.

Advanced Robotics with the Toddler 1.0 - Page 97

Experiment #6: Object Avoidance with Infrared

o Enter and run Program Listing 6.1.

o This program makes use of the BASIC Stamp Editor’s DEBUG Terminal, so leave the serial cable connected
to the Toddler while Program Listing 6.1 is running.

Toddl er Program 6.1: IR Pairs Display
{$St anp bs2} ' Stanp Directive.

BEEEE Declarations --------------

left IR det var bit ' Two bit variables for saving IR
right IR det var bit ' detector output val ues

left_pin con 10

right_pin con 15

left_in var inll

right_in var inl4

BEEEE Initialization ------------

output left_pin ' signals to function as outputs
out put right_pin

BEEEE Main Routine --------------

mai n
Det ect object on the left.
freqout left_pin, 1, 38500 ' Send freqout signal - left IR LED.
left IR det = left_in ' Store IR detector output in RAM
' Detect object on the right.
freqout right_pin, 1, 38500 ' Repeat for the right IR pair.
right IR det = right_in
debug hone, "Left= ", binl left_I|IR det
pause 20
debug " Right=", binl right_|R det
pause 20
goto main

o While program Listing 6.1 is running, point the IR detectors so nothing nearby could possibly reflect
infrared back at the detectors. The best way to do this is to point the Toddler up at the ceiling. The
DEBUG output should display both left and right values as equal to “1.”

o By placing your hand in front of an IR pair, it should cause the DEBUG Terminal display for that detector
to change from “1” to “0.” Removing your hand should cause the output for that detector to return to a

Page 98 - Advanced Robotics with the Toddler 1.0

Experiment #6: Object Avoidance with Infrared

“1" state. This should work for each individual detector, and you also should be able to place your hand
in front of both detectors and make both their outputs change from “1” to “0.”

o If the IR Pairs passed all these tests, you're ready to move on; otherwise, check your program and circuit
for errors.

How the IR Pairs Display Program Works

Two bit variables are declared to store the value of each IR detector output. The first FREQOUT command in
the MaI N routine is different. The command FREQOUT left_pin, 1, 38500 sends the on-off pattern
shown in Figure 6.2 via left IR LED circuit by causing it to flash on and off rapidly. The harmonic contained in
this signal either bounces off an object, or not. If it bounces off an object and is seen by the IR detector, the
IR detector sends a low signal to I/O pin | ef t _i n. Otherwise, the IR detector sends a high signal to | ef t _i n.
So long as the next command after the FREQOUT command is the one testing the state of the IR detector’s
output, it can be saved as a variable value in RAM. The statement I eft IR det = left_in checks
| ef t _i n, and saves the value (“1” for high or “0” for low) in the | eft _I R_det bit variable. This process is
repeated for the other IR pair, and the IR detector’s output is saved in the ri ght _I R det variable. The
DEBUGcommand then displays the values in the debug window.

Your Turn

o Experiment with detuning your IR pairs by using frequencies above 38.5 kHz. For example, try 39.0, 39.5,
40.0, 40.5 and 41 kHz. Note the maximum distance that each will detect by bringing an object
progressively closer to the IR pairs and noting what distance began to cause the IR detector output to
switch from “1” to “0.”

Advanced Robotics with the Toddler 1.0 - Page 99

Experiment #6: Object Avoidance with Infrared

Activity #2: Object Detection and Avoidance

The IR pairs provide range information that the Toddler can be use to avoid obstacles. A simple program can
simply avoid obstacles providing a random walk around a room without causing a collision. Obstacles must be
high enough to be detected by the Toddler’s IR detectors.

Real-Time IR Navigation

Program Listing 6.2 checks the IR pairs and delivers one of four different pulses based on the sensors. Each
of the navigational routines is just a single pulse in the Forward, Left _turn, Ri ght _t urn Or Backwar d
directions. After the pulse is applied, the sensors are checked again, then another pulse is applied, etc. This
program also makes use of some programming techniques you will find very useful.

Toddl er Program 6.2: (Object Detection And Avoi dance
{$St anp bs2} ' Stanp Directive.

----- [1/O Definitions J------mmmm o e e e

TiltServo CON 13 " Tilt servo on P12
Stri deServo CON 12 ' Stride servo on P13

MoveDel ay CON 25 ' in mcrcoseconds
TiltStep CON 10 ' TiltServo step size
RightTilt CON 620 "Tilt limts
CenterTilt CON 750

LeftTilt CON 880

StrideSt ep CON 10 ' StrideServo step size
Ri ght Stri de CON 650 ' Stride limts
CenterStride CON 750

Left Stride CON 850

Fi gur eLoop VAR Ni b

MovelLoop VAR Byt e ' Loop for repeat novenents
MoveLoopLi m t VAR Byt e

SubMbvelLoop VAR Byt e ' Loop for repeat subrmovenents

Page 100 - Advanced Robotics with the Toddler 1.0

Experiment #6: Object Avoidance with Infrared

SubMbovelLoopLi m t VAR Byt e

Pul ses VAR Wor d ' Pul se vari abl e
CurrentTilt VAR Wor d

Current Stride VAR Wor d

Newval ue VAR Wor d

Dx VAR Pul ses

VK VAR Wor d

Mk Cur r ent VAR Wor d

Sx VAR Wor d

SxCurr ent VAR Wor d

The following state tables are |lists of novenent state nunbers.
A xx indicates the end of a list.
These are used with the Movenent routine.

TL CON 0
TC CON 1
TR CON 2
SL CON 3
SC CON 4
SR CON 5
XX CON 255

These can be used with the Moyvenent routine.
The tabl es can contain Basic Myvenent Codes.

' Note: ALL novenent tables nust be in this section

LeftSemi circle DATA 7, bLeftTurn, bLeftTurn, bForward, xx
Ri ght Semicircl e DATA 7, bRi ght Turn, bRi ght Turn, bForward, xx
Wal kFor war d3 DATA 3, bForward, xx
Wal kFor war d8 DATA 8, bForward, xx

Used in Movenent tabl es.
Ref erenced bel ow usi ng LOOKUP st at enent .

bFi ni sh CON 0
bFor war d CON 1

Advanced Robotics with the Toddler 1.0 - Page 101

Experiment #6: Object Avoidance with Infrared

bBackwar d
bLeft Turn
bRi ght Turn
bPi vot Lef t
bPi vot Ri ght

Basi cMovenent s

For war d
Backwar d

Left Turn
Ri ght Turn

Pi vot Left
Pi vot Ri ght

Fi ni sh

sensors var nib

left_pin con
right_pin con
left_in var
right_in var

----- Initialization

out put 2
output left_pin
out put right_pin

---- Decl arations --

CON

DATA
DATA

DATA
DATA

DATA
DATA

DATA

10
15

inll
inl4d

freqout 2, 2000, 3000

GOSUB Reset CC

BRI Mai n Routi ne --

mai n:
FREQOUT | eft _pin, 1, 38500
sensors.bit0 = left_in

FREQQOUT ri ght _pin, 1, 38500
sensors.bitl = right_in

Page 102 - Advanced Robotics with the Toddler 1.0

OO WN

For war d

TR,
TR,

TL,
TR,

TL,
TR,

TR,

SL,
SR,

SR,
SL,

SR,
SL,

SC,

These tables can contain Myvenent Support Codes.

TL,
TL,

TC,
TC,

TC,
TC,

TC,

SR,
SL,

SL,
SR,

SL,
SR,

XX

' The lower 2 bits of the
sensors variable are used to store
I R det ector val ues.

' Set all

XX
XX

TL,
TR,

TR,
TL,

SR,
SL,

SR,
SL,

TR,
TL,

TC,
TC,

SL,
SR,

SL,
SR,

Initialize feet

XX
XX

XX
XX

1/0 lines sending freqout
signals to function as outputs

Program start/restart signal.

Send freqout signal
Store IR detector output
Det ect object on the right.
Repeat for the right

Experiment #6: Object Avoidance with Infrared

PAUSE 18 ' 18 ns pause(2 nms |l ost on freqout).

' By loading the IR detector output values into the lower 2 bits of the sensors
' variable, a nunmber btwn 0 and 3 that the branch command can use is generated.

LOOKUP sensors, [Backwar d, Pi vot Left, Pi vot Ri ght, Forward] , Mk

GOSUB Movenent
GOTO mai n

B Moverent : Move feet using DATA table referenced by M -----

Input: Mk = novenent table index, table ends in xx

! Mk = subnovenent table index, table ends in xx

' Note: Al subnovnent tables cone after the movnment tables in this file.

Movement :
I F Mk < Basi cMbvenents THEN Set upMbvenent

MxCurrent = M ' setup to use subnovenent table
MoveLoopLimt = 1
GOTO St ar t Movenent

Set upMovenent :
READ Mk, MoveloopLi m t ' read novenent table repeat count

MkCurrent = Mk + 1

St art Movenent :
FOR MovelLoop = 1 to MovelLoopLimt
Mk = MCurrent ' Mk = start of novenent table

debug hex Mk, " Movenment ", dec MovelLoop, " of ", dec MvelLoopLinmt,cr

I F Mk < Basi cMbvenents THEN Movenent Loop
' skip if novenent table

SxCurrent = M ' SxCurrent = subnovenent table index
GOTO St art SubMovenent ' enter mddle of |oop
Movenent Loop:
READ Mk, SxCurrent ' read next subrmovnent byte
M = MK + 1

I F SxCurrent = xx THEN Movenent Done
" skip if end of Iist
debug " ", hex SxCurrent, " novement",cr
L OOKUP
SxCurrent, [Fi ni sh, Forwar d, Backwar d, Left Turn, Ri ght Tur n, Pi vot Left, Pi vot Ri ght], SxCurr ent
" | ookup subnovenent tabl e index
St art SubMovenent : ' start executing subnmovenent table

Advanced Robotics with the Toddler 1.0 - Page 103

Experiment #6: Object Avoidance with Infrared

READ SxCurrent, SubMbvelLooplLi m t

read subrmovenent table repeat count
SxCurrent = SxCurrent + 1

FOR SubMbvelLoop = 1 to SubMbvelLoopLi m t
Sx = SxCurrent

debug " , hex Sx, " subnovenent ", dec SubMoveloop,

of ", dec SubMovelLoopLint,cr

SubMovenent Loop:
READ Sx, Dx ' read next subnovent action
SXx = Sx + 1

IF Dx = xx THEN SubMovenent Done

skip if end of Iist
GOSUB DoMovenent ' execute movenent
GOTO SubMovenent Loop

SubMovenent Done:
NEXT
I F Mk < Basi cMbvenents THEN Movenent Loop
exit if subnovenent table
Movenent Done:
NEXT
RETURN

DoMovenent :
debug " ", dec Dx, " action",cr
BRANCH Dx, [TiltLeft, TiltCenter, Til tRi ght, StrideLeft, StrideCenter, Stri deRi ght]
"will fall through if invalid index
RETURN

---- Movenent routines can be called directly ----

TiltLeft:
Newval ue = LeftTilt
GOTO Movenent Til t

TiltCenter:
Newval ue = CenterTilt
GOTO Movenent Til t

TiltRi ght:
NewVal ue = RightTilt

Movenment Ti l t :
FOR Pul ses = CurrentTilt TO Newval ue STEP Tilt Step
PULSOUT Tilt Servo, Pul ses
PULSQUT StrideServo, CurrentStride
PAUSE MbveDel ay
NEXT

Page 104 - Advanced Robotics with the Toddler 1.0

Experiment #6: Object Avoidance with Infrared

CurrentTilt = Newal ue
RETURN

StrideLeft:
Newval ue = LeftStride
GOTO Movenent Stri de

StrideCenter:
NewVal ue = CenterStride
GOTO Movenent Stri de

Stri deRi ght:
NewVal ue = RightStride

Movenent Stri de:
FOR Pul ses = CurrentStri de TO Newval ue STEP Stri deStep
PULSOUT Tilt Servo, CurrentTilt
PULSOQUT StrideServo, Pulses
PAUSE MbveDel ay
NEXT

Current Stride = Newval ue
RETURN

B Move feet to initial center position -----
Reset CC:

CurrentTilt
Current Stride

CenterTilt
CenterStride

FOR Pul ses = 1 TO 100 STEP Stri deStep
PULSOUT TiltServo, CenterTilt
PULSQUT StrideServo, CenterStride
PAUSE MbveDel ay

NEXT

DoRet ur n:
RETURN

Advanced Robotics with the Toddler 1.0 - Page 105

Experiment #6: Object Avoidance with Infrared

How IR Roaming by Numbers in Real-Time Works

0 Look up the Lookur command in Appendix C: PBASIC Quick Reference or in the BASIC Stamp Manual.

This Program listing declares the SENSORS variable, which is one nibble of RAM. Of the four bits in the sensors
variable, only the lowest two bits are used. Bit-0 is used to store the left detector’s output, and bit-1 is used
to store the right detector’s output.

decl arati ons:
sensors var nib

The main routine starts with the FREQOUT commands used to send the IR signals, but the commands following
each freqout command are slightly different from those used in the previous program. Instead of saving the
hit value at the input pin to a bit variable, each bit value is stored as a bit in the SENSORS variable. Bit-0 of
SENSORS is set to the binary value of i n8, and bit-1 of the sensors variable is set to the binary value of i no.
After setting the values of the lower two bits of the sensors variable, it will have a decimal value between “0”
and “3.” The BRANCH command uses these numbers to determine to which label it sends the program.

mai n:
FREQQUT | eft_pin, 1, 38500
sensors.bit0 = left_in

FREQOUT ri ght _pin, 1, 38500
sensors.bitl = right_in

PAUSE 18
LOOKUP sensors, [Backwar d, Pi vot Lef t, Pi vot Ri ght, For war d] , Mk

GOSUB Movenent
QOTO mai n

The four possible binary numbers that result are shown in Table 6.1. Also shown is the lookup action that
occurs based on the value of the state argument.

Page 106 - Advanced Robotics with the Toddler 1.0

Experiment #6: Object Avoidance with Infrared

Table 6.1: IR Detector States as Binary Numbers

Binary Value | Decimal Value | What the Value Indicates,
of state of State Branch Action Based on State
left in =0andright_in = 0,

0000 0 Both IR detectors detect object, pulse servos backwar d.
0001 1 left in =0andright_in = 1,

Left IR detector detects object, pulse ri ght _turn
0010 9 left in = 1andright_in = 0,

Right IR detector detects object, pulse forl eft _turn
3 left in = 1andright_in = 1,
Neither IR detector detects object, pulse f or war d.

0011

The Mk variable is set to the appropriate movement table index. The Moverrent routine then performs the
appropriate sequence of commands.

Advanced Robotics with the Toddler 1.0 - Page 107

Experiment #6: Object Avoidance with Infrared

Challenges

You can rearrange the address labels in the lookup command so that the Toddler does different things in
response to obstacles. One interesting activity is to try replacing the Backwar d address with the For war d
address. There will be two instances of For war d in the Lookup address list, but this is not a problem. Also,
swap the Left _t urn and Ri ght _t ur n addresses.

a Try making the changes just discussed.
If you stop your hand, the Toddler will run into it. Because of this, one Toddler cannot be programmed to

follow another without some way of distance detection. If the one in front stops, the one in back will crash
into it. This problem will be fixed as an example in the next chapter.

Page 108 - Advanced Robotics with the Toddler 1.0

Experiment #7: Staying on the Table

What's a Frequency Sweep?

Experiment #7: In general, a frequency sweep is what you do when
i checking your favorite radio stations. Set the station for
Staying on the Table one frequency, and check the output. If you don't like the
song that's playing, change the frequency and check the

output again.

Activity #1: Testing the Frequency Sweep

The Toddler can be programmed to send different IR frequencies, and to check for object detection at each
frequency. By keeping track of the frequencies for which the IR detector reported an object, its distance can
be determined. The left axis of the graph in Figure 7.1 shows how the sensitivity of the IR detector’s electronic
filter decreases as it receives frequencies greater than 38.5 kHz. The filter essentially causes the IR detector
to become less able to detect IR at these frequencies. Another way to think about it is that you have to move
an object closer if you want it to be detected at a less sensitive frequency. Since the detector is less sensitive,

it will take brighter IR (or a closer object) to make the detector see the signal.
Figure 7.1: Relative IR Sensitivity to Frequency
100% Zona
Zone 1
#
§ s Zone 2
2 B8
3 i
£ o
3z Zong 3
14
W Zone 4
i [. Zones
& G I S 1
O S A :\ / .
Modulated IR Frequency, kHz L m ity

|

Advanced Robotics with the Toddler 1.0 - Page 109

Experiment #7: Staying on the Table

Figure 7.1 compares the left axis of the graph (IR frequency) to the relative sensitivity of the IR detector. The
right side of the graph shows how the relative sensitivity of the IR detector relates to distance detection. As
detector sensitivity decreases with the increase in frequency, the object must be closer for the IR signal to be
detected. Why closer? When the detectors are made less sensitive by sending higher frequencies, it's like
giving them darker and darker lenses to look through. Just as a flashlight beam appears brighter when
reflected off an object that’s closer to you, IR reflected off a closer object appears brighter to the IR
detectors.

The right axis of Figure 7.1 shows how different frequencies can be used to indicate in which zone a detected
object is located. By starting with a frequency of 38.5 kHz, whether or not an object is in Zone 1-5 can be
determined. If an object is not yet detected, it must be beyond the detector limit (Zone 0). If an object is
detected, by testing again at 39.25 kHz, the first datum about distance is collected. If 38.5 kHz is detected the
object but 39.25 kHz did not, the object must be in Zone 1. If the object was detected at both frequencies, but
not at 40.5 kHz, we know it's in Zone 2. If all three frequencies detected the object, but it was not detected at
41.75 kHz, we know it is in Zone 3. If all four frequencies detected the object, but not 42.5 kHz, we know it's in
Zone 4. If all the frequencies detected the object, we know it's in Zone 5.

The frequency sweep technique used in this chapter works fairly well for the Toddler,
and the components are only a fraction of the cost of common IR distance sensors.
The trade off is that the accuracy of this method is also only a fraction of the accuracy

& of common IR distance sensors. For basic Toddler tasks that require some distance
perception, such as following another Toddler, this interesting technique does the
trick. Along with adding low-resolution distance perception to the Toddler’s senses, it
also provides an introduction to the concepts of filters and frequency response.

Build It!
0 Use the same IR detection circuit from Chapter 6, shown in Figure 6.4, for this activity.
Programming the IR Distance Gage

Programming the BASIC Stamp to send different frequencies involves a FOR. . . NEXT loop. The Count er
variable can be used to give the FREQOUT command different frequencies to check. This program introduces
the use of arrays. Arrays are used in Program 7.1 to store the IR detector outputs at the different
frequencies. For the | _val ues variable, the Zone 0 output is stored in bit-0 of 1 _val ues. The Zone 1
output is stored in bit-11 _val ues. bi t 1, and so on, all the way through Zone 5, which is stored in bit-5 of
| _val ues. The same measurements are taken for r _val ues.

Page 110 - Advanced Robotics with the Toddler 1.0

Experiment #7: Staying on the Table

o Enter and run Program Listing 7.1.

o This program makes use of the Debug Terminal, so leave the serial cable connected to the Toddler while

Program Listing 7.1 is running.

Toddl er Program 7.1: IR Distance Gage
{$St anp bs2}

BEEEE Declarations --------------

count er var ni b
| _val ues var byt e
r_val ues var byt e
IR freq var wor d
left_pin con 10

right_pin con 15

left_in var inll

right_in var inl4

BEEEE Initialization ------------

output left_pin
out put right_pin

BEEEE Main Routine --------------

0
0

| _val ues
r_val ues

Stanp Directive.

Mul ti pur pose counting vari abl e.
Two vars for storing left & right
freq sweep IR detector outputs.
Stores frequency arg for freqout.

Set all I/Olines sending freqout
signals to function as outputs.

| _val ues and r_val ues to O.

Load sensor outputs into | _values and r_val ues using a for...next |oop,

and a | ookup table, and bit addressing.

for counter = 0 to 4

| ookup counter, [37500, 38250, 39500, 40500, 41500] ,

freqout left_pin,1, IR freq
| _val ues. | owbit(counter) = ~left_in

freqout right_pin,1, IR freq

r_val ues. | owbit(counter) = ~right_in

next

IR freq

Di splay | _values and r_val ues in binary and ncd fornat.

debug hone, cr, cr, "Left readings

Ri ght Readi ngs", cr

Advanced Robotics with the Toddler 1.0 - Page 111

Experiment #7: Staying on the Table

debug " ", bin8 | _val ues, " ", bin8 r_values, cr
debug " ", dec5 ncd(l _val ues), " ", dec5 ncd(r_val ues), cr, cr
goto main

When the Toddler is placed facing a nearby wall (3 to 5 cm.), the Debug Terminal should display something
similar to Figure 7.2. As the Toddler is moved closer to and further from the wall, the numbers displayed by
the Debug Terminal should change increase and decrease. Each “1” represents a zone so that when you see
five 1's the object is nearest to the Toddler.

Figure 7.2: Frequency sweep data in binary and NCD format.

#3 Debug Terminal #1
Com Puark: Haud Rate: Paitiy::

jcowt BT qeem #E hore EH

Data Bits: Flow Control g T [BIR RIS

o 2 0 H e e e osk e cis
4 o
|A

Left readings Fight Readings |

00001111 oooooiil |

oooo4g Qooos

ol

3

Hlaor Keps. | Pauze | Closs:

o Place the Toddler so that it faces the wall with its IR LEDs about 1 cm. away from the wall. The left and
right readings should both be at “4” or “5.” If not, make sure each IR detector is facing in the same
direction as its IR LED.

o Gradually back the Toddler away from the wall. As the Toddler is backed away from the wall, the left and
right readings should gradually decrease to “0.”

o If either or both sides stay at all zeros or all ones, it indicates a possible mistake in either your wiring or

in the program. If this is the case, unplug your battery pack from the Toddler. Then, check your wiring
and PBASIC code for errors.

Page 112 - Advanced Robotics with the Toddler 1.0

Experiment #7: Staying on the Table

The maximum detection distance is 20 to 30 cm., depending on the reflectivity of the
wall. Some tinkering with how far left/right each IR pair is pointing may be required
to get the numbers to be the same at a given distance. A high level of precision IS
NOT necessary for these activities.

v Use a wire stripper to unsheathe about 1 cm. of insulation from a jumper wire. Slide
the insulation up one of the IR LED leads. This will protect the leads from touching
TIP each other during adjustment.

How the Distance Gauge Program Works

a Look up the LookuP command in the BASIC Stamp Manual before continuing.

Count er is a nibble variable that is used to index a FOR. . . NEXT loop. The FOR. .. NEXT loop is used for
checking the IR detectors at various frequencies. The | _val ues and r _val ues variables store the outputs
for the left and right IR detectors at the various frequencies used. Each variable stores five binary
measurements. Since the IR detector outputs are tested at a variety of frequencies, | R freq is a variable
that can store the value of the frequency that gets sent each time through the frequency testing loop.

decl arati ons:

count er var
| _val ues var
r_val ues var
IR freq var

ni b
byt e
byt e
wor d

The main routine contains two routines, one for frequency sweep and another for displaying the data
collected. The first step in the frequency sweep is setting | _val ues and r_val ues to zero. This is
important since individual bits in each variable are modified. Clearing | _val ues and r _val ues starts each
variable with a clean slate. Then individual bits can be set to “1” or “0,” depending on what the IR detectors

report.
mai n:

| _val ues
r_val ues

Advanced Robotics with the Toddler 1.0 - Page 113

Experiment #7: Staying on the Table

The f or ..next loop is where the frequency sweep occurs. The | ookup command checks the count er value
to determine which frequency to copy to the | R f r eq variable. When count er is “0,” 37500 gets copied to
I R_freq. When counter is “1,” 38250 is copied to I R freq. As the value of count er is incremented from
“0"to “4” by the for. .. next loop, each successive value in the | ookup table is copied to I R fr eq.

for counter = 0 to 4

| ookup counter, [37500, 38250, 39500, 40500, 41500], I R freq

Note that the lookup table begins the frequency sweep at 37500 (most sensitive) and ends at 41500 (least
sensitive). You might be wondering why the numbers in the lookup table don't match the frequency values
from Figure 7.1. It’s true that if the BASIC Stamp could transmit a 50% duty cycle pulse train (pulses with the
same high time and low time) at these frequencies, they would have to match the frequencies specified for
the IR detector’s filter. However, the FREQOUT command introduces other factors that affect the amplitude
of the harmonics transmitted by the IR LEDs. The math involved in predicting the optimum frequency
arguments to use is very advanced and is well outside the scope of this text. Even so, the best frequencies for
a given distance can be determined experimentally. The list of values we are using are known to be reliable.

The left sensor is checked by using f r eqout to send the current value of I R freq. Next, the .1 owbit ()
argument is used to address each successive bit in | _values. When counter is “0,” the
.l owbi t(counter) argument addresses bit-0 of 1 _val ues. When counter is “1” the
.1 owbi t (count er) argument addresses bit-1 of | _val ues, and so on. Before writing the value of i n8 to
| _val ues. | owbi t (count er), the NOT operator (~) is used to invert the bit’s value before it is stored to its
bit array location in | _val ues. The same process is then repeated for r _val ues. After the fifth time
through the f or . . . next loop, the IR data bits have all been loaded into| _val ues and r _val ues.

freqout left_pin,1,IR freq
| _values.lowbit(counter) = ~left_in

freqout right_pin,1,IR freq
r_val ues. |l owbit(counter) = ~right_in

next

The di spl ay subroutine uses a variety of formatters and text strings to display the | _val ues and r _val ues
variables. The first row of the display is the text heading indicating which readings correspond the right IR
detector and which readings correspond to the left IR detector. Remember that left and right are treated as
though you are sitting in the Toddler’s body.

di spl ay:
debug hore, cr, cr, "Left readings Ri ght Readi ngs", cr

Page 114 - Advanced Robotics with the Toddler 1.0

Experiment #7: Staying on the Table

The second row displays | _val ues and r _val ues in binary format. This allows for observation of how the
hit valuesin | _val ues and r _val ues change as the apparent distance of an object changes.

debug " ", bin8 | _val ues, " ", bin8 r_values, cr

The third row displays the ncd value of each variable. The NCD operator returns a value that corresponds to
the location of the most significant bit in a variable. If the variable is all zeros, ncd returns a zero. If the least
significant bit contains a “1,” and all the rest of the digits are “0,” NCD returns a “1.” If bit-1 contains a “1,” but
all the numbers to the left of bit-1 are zeros, ncd returns a “2,” and so on. The NCD operator is a handy way
of indicating how many ones have been loaded into the lower bits of | _val ues and r _val ues. What's really
handy is that ncd directly tells you in which zone the object has been detected.

debug " ", dec5 ncd(l _val ues), " ", dech5 ncd(r_val ues), cr, cr

When the display routine is finished sending data to the Debug Terminal, program control is returned to the
mai n label.

goto main

Your Turn

o With Program 7.1 running, place the Toddler facing the wall so that the IR LEDs are about 1.5 cm. from
the wall. For best results, tape a white sheet of paper to the wall.

O Make a note of the left and right readings.
o Start pulling the Toddler away from the wall.

o Each time the value of one or the other sensors decreases, make a note of the distance. In this way you
can determine the zones for each of your Toddler’s IR pairs.

o If the readings on one side are consistently larger than the other, you can point the IR LED on the side

reporting the larger readings outward a little further. For example, if the left IR pair continually reports
higher readings than the right IR pair, try pointing the left IR LED and detector a little further to the left.

Advanced Robotics with the Toddler 1.0 - Page 115

Experiment #7: Staying on the Table

Activity #2: The Drop-off Detector

Figure 7.3: IR LED Adjustment for Edge Detection.

One application for distance detection is checking for a drop-off. For example, if the Toddler is navigating on
a table, it can change direction if it sees the edge of the table. All you have to do is point the IR pairs
downward so that they are both pointing at the table right in front of the Toddler. A distance detection
program can then be used to detect that the table is close-up. When the Toddler nears the edge of a table,
one or both of the distance detectors will start reporting that they no longer see something close-up. That
means it's time to turn away from the abyss. This program works best on a light-colored table. Darker tables
will absorb more light and be less useful at reflecting infrared.

Q

Point your IR pairs at the surface directly in front of the Toddler as shown in Figure 7.3. The IR pairs

should be pointed downward at least 45° from horizontal and outward 45° from the Toddler’s center
line.

Perform the tests below using Program 7.1 before trying Program 7.2.

Record the IR pair outputs when the Toddler is looking straight at the table. If the values of the IR pairs
when they are looking at your tabletop are “3” or more, it indicates your detectors are seeing what they
are supposed to see.

Record the IR pair outputs when the Toddler is looking off the edge of the table. If these values remain
less than “3,” the Toddler is ready to try Program Listing 7.2.

Page 116 - Advanced Robotics with the Toddler 1.0

Experiment #7: Staying on the Table

o |If the Toddler does not give you steady and consistent readings of “3” or more when the Toddler is
looking at the table, try first adjusting the direction the IR pairs are pointing. Also, if the Toddler does not
consistently register less than “3” when it’s looking off the edge of the table, some additional adjustment
of the IR pairs also is in order.

o If the sensors report “3” or more while looking at the table and “2” or less when looking off the edge, the
Toddler is ready for Program Listing 7.2.

Make sure to be the spotter for your Toddler when running Program Listing 7.2.

Always be ready to pick your Toddler up as it approaches the edge of the table it's

navigating. If the Toddler tries to drive off the edge, pick it up before it takes the
@ plunge. Otherwise, your Toddler might become a Not-Bot!

When spotting your Toddler while it's avoiding drop-offs, be ready to pick it up from
above. Otherwise, the Toddler will see your hands instead of the drop-off and not
perform as expected..

Programming for Drop-Off Detection

Program Listing 7.2 uses modified versions of the forward, right_turn, left_turn and backward routines that
have been used and reused in every chapter since Chapter #2. The number of pulses in each routine have
been adjusted for better performance along a table edge. The check_sensors subroutine takes distance
measurements by recycling code from Program Listing 7.1: IR Distance Gage.

0 Run and test Program Listing 7.2. Remember, always be ready to pick your Toddler up if it tries to run off
the table.

' Toddl er Program 7.2: Drop-off Detection
" {$Stanp bs2} ' Stanp Directive.

TiltServo CON 13 " Tilt servo on P12
Stri deServo CON 12 ' Stride servo on P13

MoveDel ay CON 25 ' in mcrcoseconds

TiltStep CON 10 ' TiltServo step size

Advanced Robotics with the Toddler 1.0 - Page 117

Experiment #7: Staying on the Table

RightTilt
CenterTilt
LeftTilt

StrideSt ep

Ri ght Stri de
CenterStride
Left Stride

Fi gur eLoop
MovelLoop
MoveLooplLi m t

SubMbvelLoop
SubMbovelLoopLi m t

Pul ses
CurrentTilt
Current Stride
Newval ue

Dx

VK
Mk Cur r ent

Sx
SxCur r ent

TL CON
TC CON
TR CON
SL CON
SC CON
SR CON
XX CON

VAR
VAR
VAR

VAR
VAR

VAR
VAR
VAR
VAR
VAR

VAR
VAR

VAR
VAR

0
1
2
3
4
5

255

620 "Tilt limts
750
880

10 ' StrideServo step size
650 ' Stride limts

750
850

Ni b
Byt e
Byt e

Loop for repeat novenents

Byt e
Byt e

Loop for repeat subnovenents

Wor d ' Pul se vari abl e
Wor d
Wor d
Wor d

Pul ses

Wor d
Wor d

Wor d
Wor d

The following state tables are lists of nobvenent state nunbers.
A xx indicates the end of a list.
These are used with the Movenent routine.

Page 118 - Advanced Robotics with the Toddler 1.0

Experiment #7: Staying on the Table

These can be used with the Myvenent
The tabl es can contain Basic Myvenent Codes.

routine.

' Note: ALL novenent tables nust be in this section

LeftSem circle
Ri ght Semicircl e

Wal kFor war d3
Wal kFor war d8

bFi ni sh
bFor war d
bBackwar d
bLeft Turn
bRi ght Turn
bPi vot Lef t
bPi vot Ri ght

Basi cMbvenent s CON

For war d
Backwar d

Left Turn
Ri ght Turn

Pi vot Left
Pi vot Ri ght

Fi ni sh

count er var
| _val ues var
r_val ues var
I _IR freq var
r_ IR freq var

----- Local Decl arations

DATA
DATA

DATA
DATA

Used in Movenent tabl es.
Ref erenced bel ow usi ng LOOKUP st at enent .

F

DATA
DATA

DATA
DATA

DATA
DATA

DATA

ni b

VK

Sx

Mk Cur r ent
SxCur r ent

bFor war d,
bFor war d,

XX
XX

O WNEO

or war d

bLeft Turn, bLeft Turn,
bRi ght Turn, bRi ght Turn,
bForward, xx
bForward, xx
TR, SL, TL, SR, xx
TR, SR, TL, SL, xx
TL, SR, TC, SL, TL, SR,
TR, SL, TC, SR, TR SL,
TL, SR, TC, SL, TR SR,
TR, SL, TC, SR, TL, SL,
TR, SC, TC, xx

' For...next

These tables can contain Myvenent Support Codes.

TR,
TL,

TC,
TC,

SL,
SR,

SL,
SR,

XX
XX

XX
XX

| oop i ndex vari abl e.
Store R sensor vals for processing.
Store L sensor vals for processing.
Stores L IR freqgs from | ookup table.
Stores R IR freqs from | ookup table.

Advanced Robotics with the Toddler 1.0 - Page 119

Experiment #7: Staying on the Table

left_pin con 10
right_pin con 15
left_in var inll
right_in var inl4

BEEEE Initialization ------------

output left_pin ' Set all I1/Olines sending freqout
out put right_pin ' signals to function as outputs.

BEEEE Initialization ------------

out put 2 ' Declare freqout lines to be outputs.
freqout 2,500, 3000 ' Signal programis starting/restarting.

GOSUB Reset CC
BEEEE Main Routine --------------
mai n: Mai n routine

' The command "gosub check_sensors" sends the programto a subroutine that

' loads distance values into | _values and r_values. So, when the programreturns
' fromthe check_sensors subroutine, the values are updated and ready for

' distance based deci sions.

gosub check_sensors

' The distances are checked for four different inequalities. Depending on the
' inequality that turns out to be true, the program either branches to the

' forward, left_turn, right_turn or backward navi gati on routine.

' The "3" value used below to test the boundary conditions may need to be

' changed dependi ng upon the col or of the wal ki ng surface and the angl e of

' IR LEDs and detectors.

boundary CON 2

if | _values >= boundary and r_val ues >= boundary then go_forward
if | _values >= boundary and r_val ues < boundary then left_turn

if | _values < boundary and r_val ues >= boundary then right_turn
if | _values < boundary and r_val ues < boundary then go_backward

goto main Repeat the process.

BEEEE Navi gati on Routines -------
go_forward: ' Deliver a single forward pul se, then

Mk = Forwar d
GOSUB Movenent

Page 120 - Advanced Robotics with the Toddler 1.0

Experiment #7: Staying on the Table

goto main go back to the nmin: | abel
left_turn: ' Deliver eight left pulses, then
Mk = Pivot Left
GOSUB Movenent
goto main go back to the nmin: | abel
right_turn: ' Deliver eight right pul ses, then
Mx = Pivot R ght
GOSUB Movenent
goto main go back to the nmin: | abel
go_backwar d: ' Deliver eight backward pul ses, then
Mk = Backward
GOSUB Movenent
goto main go back to the nmin: | abel
----- Subroutines ---------------

' The check sensors subroutine is a nodified version of ProgramListing 6.1

' wi thout the debug Terminal display. |I|nstead of displaying |_values and

' r_values, the main routine uses these values to deci de which way to go.

check_sensors: ’
| _values =0 ' Reset | _values and r_values to O.
r_values =0

Load sensor outputs into | _values and r_values using a for...next |oop,
' a |l ookup table, and bit addressing.

for counter = 0 to 4

check_l ef t _sensors:

| ookup counter, [37500, 38250, 39500, 40500, 41500],1 _IR freq
freqout left_pin, 1, I_IR freq
| _val ues. | owbit(counter) = ~ left_in

check_ri ght _sensors:
| ookup counter, [37500, 38250, 39500, 40500, 41500],r_IR freq
freqout right_pin, 1, r_IR freq
r_val ues. |l owbit(counter) = ~ right_in

next
' Convert | _values and r_values frombinary to ncd format.

| _val ues
r_val ues

= ncd | _val ues

= ncd r_val ues

' Now | _val ues and r_val ues each store a nunber between 0 and 5 correspondi ng
to the zone the object is detected in. The programcan now return to the

' part of the mamin routine that makes deci sions based on these distance

Advanced Robotics with the Toddler 1.0 - Page 121

Experiment #7: Staying on the Table

measur enent s.

return

----- Moverent : Move feet using DATA table referenced by M -----

Input: Mk = novenent table index, table ends in xx
! Mk = subnovenent table index, table ends in xx
' Note: Al subnovnent tables cone after the movnment tables in this file.

Movemnent :
I F Mk < Basi cMbvenents THEN Set upMbvenent

MxCurrent = M ' setup to use subnovenent table
MoveLoopLimt = 1
GOTO St ar t Movenent

Set upMovenent :
READ Mk, MoveloopLi m t ' read novenent table repeat count
MxCurrent = M + 1

St art Movenent :
FOR MovelLoop = 1 to MovelLoopLimt
Mk = MCurrent ' Mk = start of novenent table

debug hex Mk, " Movenent ", dec Moveloop,

of ", dec MovelLoopLimt,cr

I F Mk < Basi cMbvenents THEN Movenent Loop
' skip if novenent table

SxCurrent = M ' SxCurrent = subnovenent table index
GOTO St art SubMovenent ' enter mddle of |oop
Movenent Loop:
READ Mk, SxCurrent ' read next subrmovnent byte
M = MK + 1

I F SxCurrent = xx THEN Movenent Done
" skip if end of Iist
debug " ", hex SxCurrent, " novement",cr
L OOKUP
SxCurrent, [Fi ni sh, Forwar d, Backwar d, Left Tur n, Ri ght Tur n, Pi vot Left, Pi vot Ri ght], SxCurr ent
' | ookup subnovenent tabl e index
St art SubMovenent : ' start executing subnmovenent table
READ SxCurrent, SubMbvelLoopLi m t
' read subnovenent tabl e repeat count
SxCurrent = SxCurrent + 1

FOR SubMbvelLoop = 1 to SubMbvelLoopLi m t
Sx = SxCurrent

debug " , hex Sx, " subnovenent ", dec SubMoveloop, of ", dec SubMoveloopLint,cr

Page 122 - Advanced Robotics with the Toddler 1.0

Experiment #7: Staying on

the Table

SubMovenent Loop:
READ Sx, Dx ' read next subnovent action
SXx = Sx + 1

IF Dx = xx THEN SubMovenent Done

skip if end of Iist
GOSUB DoMovenent ' execute movenent
GOTO SubMovenent Loop

SubMovenent Done:
NEXT
I F Mk < Basi cMbvenents THEN Movenent Loop
' exit if subnovenent table
Movenent Done:
NEXT

RETURN

DoMovenent :
debug " ", dec Dx, " action",cr
BRANCH Dx, [TiltLeft, TiltCenter, Til tRi ght, StrideLeft, StrideCenter, Stri deRi ght]
"will fall through if invalid index
RETURN

---- Movenent routines can be called directly ----

TiltLeft:
Newval ue = LeftTilt
GOTO Movenent Til t

TiltCenter:
Newval ue = CenterTilt
GOTO Movenent Til t

TiltRi ght:
Newal ue = RightTilt

Movenment Ti l t:
FOR Pul ses = CurrentTilt TO Newval ue STEP Tilt Step
PULSOUT Tilt Servo, Pul ses
PULSQUT StrideServo, CurrentStride
PAUSE MbveDel ay
NEXT

CurrentTilt = Newal ue
RETURN

StrideLeft:
Newval ue = LeftStride
GOTO Movenent Stri de

Advanced Robotics with the Toddler 1.0

- Page 123

Experiment #7: Staying on the Table

StrideCenter:
NewVal ue = Center Stride
GOTO Movenent Stri de

Stri deRi ght:
Newval ue = Right Stride

Movenent Stri de:
FOR Pul ses = CurrentStri de TO Newval ue STEP Stri deStep
PULSOUT Tilt Servo, CurrentTilt
PULSOQUT StrideServo, Pulses
PAUSE MbveDel ay
NEXT

Current Stride = Newval ue

RETURN

----- Move feet to initial center position -----
Reset CC.

CurrentTilt
Current Stride

CenterTilt
CenterStride

FOR Pul ses = 1 TO 100 STEP Stri deStep
PULSOUT TiltServo, CenterTilt
PULSQUT StrideServo, CenterStride
PAUSE MbveDel ay

NEXT

DoRet ur n:
RETURN

Aliased Variables

The Drop-off Detection program in Program 7.2 is the beginning of a rather large program in terms of DATA
memory. In fact, without a little PBASIC programming trick, the program will not compile. The trick is PBASIC's
ability to alias a variable so it uses the storage space of another variable. This allows the program to run with
the 16 words of RAM space (actually 3 words are used for the BASIC Stamp’s PBASIC and interface pin
support).

The following code from Program Listing 7.2 shows how the aliasing is done.

----- Local Declarations --------------

count er var ni b
| _val ues var VK
r_val ues var SX

Page 124 - Advanced Robotics with the Toddler 1.0

Experiment #7: Staying on the Table

var Mk Cur r ent
var SxCurr ent

IR freq
IR freq
The first var definition is normal. It defines a nibble variable. The next four reuse different variables. They are
the same size as the aliased variables. The main requirement to keep in mind when using aliased variables is
that any variables sharing the same storage that these variables cannot be used at the same time. In other
words, do not try the following.

| _values =1
M = 2

Aliasing is normally used because the original variable names do not work well with a new part of the program
or subroutine. PBasic has no concept of local variables so aliasing is required.

The BASIC Stamp’s IDE can present the memory map of the current program. This provides RAM and EEPROM
usage information. The memory map for the Toddler Program 7.2 is shown in Figure 7.4. It shows 5 bytes of
free RAM. Not much but enough. This inlcudes the use of four word aliased variables. If these variables were
not aliased then the program would need additional 8 bytes, 3 more than available.

Advanced Robotics with the Toddler 1.0 - Page 125

Experiment #7: Staying on the Table

Figure 7.4: EEPROM Memory Map for Toddler Program 7.2

Memory Map - EEPROM 34% Full [Toddler Program 7.2 Drop-off Detection_bs2)

Detailed EEPROM Map: RAM Map

0[S [eB[AEICIOEIFIA] 1o T —
EQQ_,U? 33'03_01 i QT Uﬁl- |j4_U'| FF D3_UT i UE m FF__I UUTS T 1 TN O T T O 1 LY A |
010,01 020300 05 FF 0 02 0500 03 FF 0100 05 01 = I I O I
0201103 00 05 02 03 FF 01 02 03 01 05 02 03 00 05 FF T o I B S S e
[030]03 00 05 01 0302105 01 03 FF 0302 0301 0500 U i e 1 o e |
| 0403 0105 FF 01 02 04 01 FF 0000 0000 00 00 00 1 SLE SR I O 0 |
Iz FeGy T T T T T T TTT
60| FEGe [e e
o] 5 5 i o |
et 150 O A 0 |
080 peGr OO T T T T
B o R
6| REGS
(B0 REGTD: NI T T T T TTT]
ozl REGILCIT T T TTTTTITTTIITT]
%E_@. 1 S T O O D O
OEQD Condensed
EF“E‘ EEPROM Map Source Code
TEJ-U-. i o Pradrar EAMTC I
rE=y e B - Fin:
10} -EEPROM Legend | | I -'+ord
120} B - Urdef Data | | B - Byte
130 [-Det Diata [- Mibble
140 B - Progran [-Eit
-1-5-9- | | [= Uruzed . 1 -Unuzed |

Aliasing should be used with great care. It is a significant source of problems when debugging a program. The
advantage of using this with the BASIC Stamp is that only a limited number of variables will be used in the
program so it is readily apparent where problems occur.

In this case, the initial set of variables is including M are used in the movement part of the program. Only the
Mk variable is used outside of the routine Moverment routine and that is used to pass a parameter to the
routine. The aliased variables including | _I R fr eq variable is used in the range finding routine. Since these
two routines do not call each other it is easy to isolate the two with respect to variables.

How the Drop-off Avoidance Program Works
Now that we have the aliasing issue out of the way we can move onto the main program. The first thing the
mai n routine does is call the check_sensor s subroutine. Note that check_sensor s is simply Program 7.1

with no Debug Terminal display placed in a subroutine. Instead of debugging the NCDvalues of | _det ect and
r _det ect , the values of these two variables are simply converted to NCD values using the statements:

Page 126 - Advanced Robotics with the Toddler 1.0

Experiment #7: Staying on the Table

| _values = ncd | _val ues
and
r_values = ncd r_val ues

After calling the check_sensors subroutine, I _val ues and r_val ues are numbers between “0” and “5.”
These values are used instead of the “1” and “0” values used in the whiskers program. After the program
returns from the check_sensors subroutine, | _values and r_val ues are checked against the
benchmarks distance indicating the edge of the table has been detected.

boundary CON 2

if | _values >= boundary and r_val ues >= boundary then go_forward
if I _values >= boundary and r_values < boundary then left_turn

if I _values < boundary and r_val ues >= boundary then right_turn
if | _values < boundary and r_values < boundary then go_backward

The routines then load the M variable with the index of the appropriate table. The Movenent routine then
uses the table to initiate the Toddler's leg movements. The boundary value is the distance boundary
condition. This may need to be changed depending upon the color of the surface the Toddler is walking on. It
must be set so that the Toddler reliably sees the table when moving forward.

The angle at which the IR LEDs and sensors can be tilted downward is limited so a low boundary value is
typical. One alternative to having a value of 1 or 2 is to adjust the range finding frequencies so that the
midrange values are sensing distances farther away. The other alternative is to mount the IR LEDs and sensors
closer or on to the Toddler’s feet.

The current configuration with the IR KEDs and sensors mounted on the Toddler’s circuit board does lead to a
long rang recognition of the edge of the table so the Toddler should not get much closer than a foot from the
edge. This means the Toddler needs a relatively large table with a white or light colored surface to walk on.

The Toddler will also attempt to walk along the edge of the table although this is not explicitly built into the
program. In theory, if the Toddler walks perpendicular to the edge it will walk to the edge, back up, walk
forward and repeat this indefinitely. In practice, this does not occur for two reasons. The first is that the
Toddler's movement is not perfectly repeatable. As it moves forward and backwards, the Toddler turns
slightly to the one side or the other. Eventually the IR sensors will detect the difference and the Toddler will
turn instead of backing up or moving forward.

Advanced Robotics with the Toddler 1.0 - Page 127

Experiment #7: Staying on the Table

The sensors themselves are another area that will cause the Toddler to turn parallel to the edge of the able.
This will occur if one sensor is more sensitive than the other. Of course, this difference will work in one
direction and may cause the Toddler to take an extra step forward if the detection is handled by the other
side. This will not cause the Toddler to walk off the table though since it tries to stay so far away from the
edge. An extra step or two will not cause a problem.

One area that can be a problem especially when the IR LEDs and sensors are pointed forward is that the
Toddler will have limited peripheral vision. It is possible for the Toddler to turn parallel to an edge and drift
towards the edge. In theory, the sensor on that side should detect the edge and the Toddler will turn away
from the edge. This problem occurs more often when the edge of the table is irregular. Aiming the IR LEDs and
sensors outward slightly can help eliminate the problem if it occurs.

Activity #3: Toddler Shadow Walker

For one Toddler to follow another, the Toddler that follows, a.k.a. the shadow walker, has to know how far the
lead vehicle is ahead. If the shadow vehicle is lagging behind, it has to detect this and speed up. If the shadow
vehicle is too close to the lead vehicle, it has to detect this as well and slow down. If it's the right distance, it
can wait until the measurements indicate it’s too far or too close again.

Unlike the Toddler’s sibling the Boe-Bot, the Toddler moves in discrete steps, not small increments using
wheels. Whereas the Boe-Bot uses calculated proportional control, the Toddler must be a bit more discrete. It
is possible to take proportional steps but the accuracy of the Toddler's movements minimizes the effect of
minor changes to movements. On the other hand, the Boe-Bot can move one or both of its wheels a fraction
of an inch in subsecond times. A Toddler step can take as long as a second.

As it turns out, the Toddler’s IR range finders work well for tracking another Toddler. The range results are in
discrete values and the number is not large. If it were, then the values would have to be converted down to
this level of gradation that is manageable. It is then simply a matter of choosing the appropriate step type and
magnitude.

The Toddler is a difficult target for another Toddler to locate with its many facets. To improve the detection
using the IR sensors, the target Toddler should have a white box placed around it. This can be made of paper
or cardboard and it can be affixed to the Toddler’s frame using tape or other means. The box should start
about where the base of the Toddler’s central box containing the servos and can extend to just above the
circuit board. The IR sensors can be angled down slightly so they will detect the central portion of the box at a
distance of about a foot. The box should not impede the foot movement or the servors and it can extend out
from the Toddler by as much as a few inches. It should not be too heavy or large so as to significantly change
the center of gravity forcing adjustments in walking behavior.

Page 128 - Advanced Robotics with the Toddler 1.0

Experiment #7: Staying on the Table

Although these changes are not absolutely required for one Toddler to follow another, they will improve the
overall system performance. Also, the roaming area needs to be free of obstacles and walls otherwise the
Toddler that will be following may detect these obstacles instead. There is no checking in the program to
determine if the object detected is remaining stationary although it is possible to modify the program to do
s0.

Programming the Toddler Shadow Walker

Program Listing 7.3 uses additional br anch and | ookup statements to adjust the Toddler’s position based on
the range finder results. The movements are designed to aim the Toddler at the object it is following, usually
another Toddler, and to keep that object at a discrete distance.

0 Run Program Listing 7.3.

a Point the Toddler at an 8 %2~ 11" sheet of paper held in front of it as though it's a wall-obstacle. The
Toddler should maintain a fixed distance between itself and the sheet of paper.

o Try moving the paper so it rotates about the Toddler. The Toddler should rotate with it.

o Tryusing the sheet of paper to lead the Toddler around. The Toddler should follow it.

Advanced Robotics with the Toddler 1.0 - Page 129

Experiment #7: Staying on the Table

' Toddl er Program 7. 3: Shadow Wl ker
" {$Stanp bs2} ' Stanp Directive.

B [1/O Definitions J-----ommmmm oo e e

TiltServo CON 13 " Tilt servo on P12
Stri deServo CON 12 ' Stride servo on P13

MoveDel ay CON 25 ' in mcrcoseconds
TiltStep CON 20 ' TiltServo step size
RightTilt CON 630 "Tilt limts
CenterTilt CON 750

LeftTilt CON 870

StrideSt ep CON 20 ' StrideServo step size
Ri ght Stri de CON 650 ' Stride limts
CenterStride CON 750

Left Stride CON 850

Fi gur eLoop VAR Ni b

MovelLoop VAR Byt e ' Loop for repeat novenents
MoveLoopLi m t VAR Byt e

SubMbvelLoop VAR Byt e ' Loop for repeat subrmovenents
SubMbovelLoopLi m t VAR Byt e

Pul ses VAR Wor d ' Pul se variable
CurrentTilt VAR Wor d

Current Stride VAR Wor d

NewVal ue VAR Wor d

Dx VAR Pul ses

MK VAR Wor d

MxCur r ent VAR Wor d

Sx VAR Wor d

SxCur r ent VAR Wor d

Page 130 - Advanced Robotics with the Toddler 1.0

Experiment #7: Staying on the Table

TL
TC
TR
SL
SC
SR

XX

' Not e:

Tur nLef t Forward
Tur nRi ght For war

Pi vot Lef t For war

CON

These can be used with the Myvenent
The tabl es can contain Basic Myvenent Codes.

d

d

Pi vot Ri ght For war d

Backwar dPi vot Lef t

Backwar dPi vot Ri

For war d2
Backwar d2

bFi ni sh
bFor war d
bBackwar d
bLeft Turn
bRi ght Turn
bPi vot Lef t
bPi vot Ri ght

ght

routine.
0
1
2
3
4
5

255

routine.

ALL novenent tables nust be in this section

DATA 1, bLeft Turn,
DATA 1, bRi ght Turn,
DATA 1, bPivotLeft,
DATA 1, bPivotRi ght,
DATA 1,

DATA 1,

DATA 2, bForward, xx
DATA 2, bBackward,

Used in Movenent tabl es.
Ref erenced bel ow usi ng LOOKUP st at enent .

OO WNEO

These tables can contain Myvenent Support Codes.

The following state tables are lists of novenent state nunbers.
A xx indicates the end of a list.
These are used with the Myvenent

bForward, xx
bForward, xx

bForward, xx
bForward, xx

bBackwar d, bPivotLeft, xx
bBackwar d, bPivotRi ght, xx

Advanced Robotics with the Toddler 1.0 - Page 131

Experiment #7: Staying on the Table

Basi cMovenent s CON For war d
Nop DATA 1, xx
For war d DATA 1, TR
Backwar d DATA 1, TR
Left Turn DATA 1, TL,
Ri ght Turn DATA 1, TR
Pi vot Lef t DATA 3, TL,
Pi vot Ri ght DATA 3, TR
Fi ni sh DATA 1, TR

SL,
SR,

SR,
SL,

SR,
SL,

SC,

BEEEE Moverment LOOKUP entries --------------

" In general, a 3 will be the closest desirable distance.
10ro CON For war d

lor1l CON Tur nRi ght For war d

1 0r2 CON Pi vot Ri ght For war d
10r3 CON Pi vot Ri ght

10r4 CON Ri ght Turn

10r5 CON Backwar dPi vot Ri ght
1 1r0 CON Pi vot Lef t For war d

I 1rl CON For war d

I 1r2 CON Pi vot Ri ght For war d
11r3 CON Pi vot Ri ght

1 1r4 CON Pi vot Ri ght

11r5 CON Backwar dPi vot Ri ght
12r0 CON Tur nLef t For war d

I 2r1 CON Tur nLef t For war d

1 2r2 CON For war d

12r3 CON Nop

1 2r4 CON Pi vot Ri ght

12r5 CON Backwar dPi vot Ri ght
13r0 CON Pi vot Lef t

13r1 CON Pi vot Lef t

13r2 CON Nop
13r3 CON Nop
13r4 CON Nop
13r5 CON Backwar dPi vot Ri ght

1 4r0 CON Backwar dPi vot Lef t

Page 132 - Advanced Robotics with the Toddler 1.0

TL,
TL,

TC,
TC,

TC,
TC,

TC,

is within inches.

SR,
SL,

SL,
SR,

SL,
SR,

XX

XX
XX

TL,
TR,

TR,
TL,

SR,
SL,

SR,
SL,

TR,
TL,

TC,
TC,

These constants shoul d reference the appropriate novenent table.
The constant syntax is Ixry where x and y indicate the range fromthe
left and right sensor respectively. A zero val ue indicates nothing

is within range while a 5 indicates an object

SL,
SR,

SL,
SR,

XX
XX

XX
XX

Experiment #7: Staying on the Table

| 4r1 CON
| 4r2 CON
| 4r3 CON
| 4r4 CON
| 4r5 CON
| 5r0 CON
I 5r1 CON
| 5r2 CON
| 5r3 CON
| 5r4 CON
| 5r5 CON
fe---- Local
count er
| _val ues
r_val ues
I _IR freq
r_ IR freq
left_pin
right_pin
left_in
right_in

out put 2

Backwar dPi vot Lef t
Pi vot Left

Nop

Backwar d

Backwar d

Backwar dPi vot Lef t
Backwar dPi vot Lef t
Backwar dPi vot Lef t
Backwar dPi vot Lef t
Backwar d
Backwar d

Declarations --------------

var ni b

var VK

var Sx

var Mk Cur r ent
var SxCur r ent
con 10

con 15

var inll

var inl4d

----- Initialization ------------

output left_pin
out put right_pin

freqout 2,500, 3000 '

GOSUB Reset CC

BEEEE Main Routine --------------

gosub check_sensors '

For...next |oop index variable.
Store R sensor vals for processing.
Store L sensor vals for processing.
Stores L IR fregs from | ookup table.
Stores R IR fregs from | ookup table.

Decl are out put s.

Beep at startup.

Mai n routine

Get distance val ues for each sensor

"debug "1",dec | _values,"r", dec r_val ues,cr

Branch | _values,[leftO,leftl,left2,left3,1eft4,lefth]

| eftO:

LOOKUP r_val ues,[10r0,10r1,10r2,10r3,10r4,10r5], Mk
GOTO nmai n_novenent

Advanced Robotics with the Toddler 1.0 - Page 133

Experiment #7: Staying on the Table

left1:
LOOKUP r_val ues, [11r0,11r1,11r2,11r3,11r4,11r5], Mk
GOTO nmai n_novenent

left2:
LOOKUP r_val ues, [12r0,12r1,12r2,12r3,12r4,12r5], Mk
GOTO nai n_novenent

|l eft3:
LOOKUP r_val ues, [13r0,13r1,13r2,13r3,13r4,13r5], Mk
GOTO nmai n_novenent

| eft4:
LOOKUP r_val ues, [14r0,14r1,14r2,14r3,14r4,14r5], Mk
GOTO nmai n_novenent

| eftb5:
LOOKUP r_val ues, [15r0,15r1,15r2,15r3,15r4,15r5], Mk

mai n_novenent :
GOSUB Movenent
GOTO nai n " Infinite I oop.

----- Subroutine(s) -------------

check_sensors:

| _values =0 ' Set distances to 0.
r_values =0
' Take 5 measurenents for distance at each IR pair. |f you fine tuned your

frequencies in Activity #2, insert themin the | ookup tables.

for counter = 0 to 4
check_l ef t _sensors:

| ookup counter, [37500, 38250, 39500, 40500, 41000],1 _IR freq
freqout left_pin, 1,1 IR freq
| _val ues. | owbit(counter) = ~left_in

check_ri ght _sensors:
| ookup counter, [37500, 38250, 39500, 40500, 41000],r_IR freq
freqout right_pin,1,r IR freq

r_val ues. | owbit(counter) = ~right_in
next
| _values = ncd | _val ues ' Value (0 to 5) for distance depending on MSB
r_values = ncd r_val ues
return

----- Moverent : Move feet using DATA table referenced by Mk -----

Page 134 - Advanced Robotics with the Toddler 1.0

Experiment #7: Staying on the Table

Input: Mk = novenent table index, table ends in xx
or
' Mx = subnovenent table index, table ends in xx

' Note: Al subnovnent tables cone after the movnment tables in this file.

Movement :
I F Mk < Basi cMbvenents THEN Set upMbvenent

MxCurrent = M ' setup to use subnovenent table
MoveLoopLimt = 1
GOTO St ar t Movenent

Set upMovenent :
READ Mk, MoveloopLi m t ' read novenent table repeat count
MxCurrent = M + 1

St art Mbvenent :
FOR MovelLoop = 1 to MovelLoopLimt

Mk = MCurrent ' Mk = start of novenent table
'debug hex Mx, " Movenent ", dec MovelLoop, " of ", dec MovelLoopLint,cr
I F Mk < Basi cMbvenents THEN Movenent Loop
' skip if novenent table
SxCurrent = M ' SxCurrent = subnovenent table index
GOTO St art SubMovenent ' enter mddle of |oop
Movenent Loop:
READ Mk, SxCurrent ' read next subrmovnent byte
M = MK + 1

I F SxCurrent = xx THEN Movenent Done
" skip if end of Iist
"debug " ", hex SxCurrent, " novement",cr
L OOKUP
SxCurrent, [Fi ni sh, Forwar d, Backwar d, Left Tur n, Ri ght Tur n, Pi vot Left, Pi vot Ri ght], SxCurr ent
" | ookup subnovenent table index
St art SubMovenent : ' start executing subnmovenent table
READ SxCurrent, SubMbvelLooplLi m t
' read subnovenent tabl e repeat count
SxCurrent = SxCurrent + 1

FOR SubMbvelLoop = 1 to SubMbvelLoopLi m t
Sx = SxCurrent

' debug " , hex Sx, " subnovenent ", dec SubMoveloop,

of ", dec SubMovelLoopLint,cr
SubMovenent Loop:

READ Sx, Dx ' read next subnovent action

SXx = Sx + 1

I F Dx = xx THEN SubMbvenent Done
' skip if end of Iist

Advanced Robotics with the Toddler 1.0 - Page 135

Experiment #7: Staying on the Table

GOSUB DoMovenent ' execute movenent
GOTO SubMovenent Loop

SubMovenent Done:
NEXT
I F Mk < Basi cMbvenents THEN Movenent Loop
' exit if subnovenent table
Movenent Done:
NEXT
RETURN

DoMovenent :
' debug " ", dec Dx, " action",cr
BRANCH Dx, [TiltLeft, TiltCenter, Til tRi ght, StrideLeft, StrideCenter, Stri deRi ght]
"will fall through if invalid index
RETURN

' ---- Movenent routines can be called directly ----

TiltLeft:
Newval ue = LeftTilt
GOTO Movenent Til t

TiltCenter:
Newval ue = CenterTilt
GOTO Movenent Til t

TiltRi ght:
Newal ue = RightTilt

Movenment Ti l t:
FOR Pul ses = CurrentTilt TO Newval ue STEP Tilt Step
PULSOUT Tilt Servo, Pul ses
PULSQUT StrideServo, CurrentStride
PAUSE MbveDel ay
NEXT

CurrentTilt = Newal ue
RETURN

StrideLeft:
Newval ue = LeftStride
GOTO Movenent Stri de

StrideCenter:
NewVal ue = Center Stride
GOTO Movenent Stri de

Stri deRi ght:
Newval ue = Right Stride

Page 136 - Advanced Robotics with the Toddler 1.0

Experiment #7: Staying on the Table

Movenent Stri de:
FOR Pul ses = CurrentStride TO Newval ue STEP Stri deStep
PULSOUT Tilt Servo, CurrentTilt
PULSOQUT StrideServo, Pulses
PAUSE MbveDel ay
NEXT

Current Stride = Newval ue

RETURN

----- Move feet to initial center position -----
Reset CC.

CurrentTilt
Current Stride

CenterTilt
CenterStride

FOR Pul ses = 1 TO 100 STEP Stri deStep
PULSOUT TiltServo, CenterTilt
PULSQUT StrideServo, CenterStride
PAUSE MbveDel ay

NEXT

DoRet ur n:
RETURN 7
How the Shadow Walker Program Works

The first thing the mai n routine does is call the check_sensor s subroutine. After the check_sensors
subroutine is finished, I _val ues and r _val ues each contain a number corresponding to the zone in which
an object was detected for both the left and right IR pairs.

mai n:
gosub check_sensors

The next line of code jumps to one of many LOOKUP statements. The BRANCH statement uses the status of the
left IR sensor while the LOOKUP statements use the status of the right IR sensor. These set the M variable
with the table index for the movement to be performed by the Movenent routine.

Branch | _values,[leftO,leftl, left2,left3,left4,|efth]
| eftO:
LOOKUP r_values, [10r0,10r1,10r2,10r3,10r4,10r5], Mk
GOTO mai n_novenent

leftl:

Advanced Robotics with the Toddler 1.0 - Page 137

Experiment #7: Staying on the Table

LOOKUP r_values, [11r0,11r2,11r2,11r3,11r4,11r5], Mk
GOTO mai n_novenent

| eft2:
LOOKUP r_values, [12r0,12r1,12r2,12r3,12r4,12r5], Mk
GOTO mai n_novenent

| ef t 3:
LOOKUP r_values, [13r0,13r1,13r2,13r3,13r4,13r5], Mk
GOTO mai n_novenent

| ef t 4:
LOOKUP r_values, [14r0,14r1,14r2,14r3,14r4,14r5], Mk
GOTO mai n_novenent

| eft5:
LOOKUP r_val ues, [15r0,15r1,15r2,15r3,15r4,15r5], Mk

mai n_novenent :
GOSUB Movenent

The values used in the LOOKUP Statement are defined near the start of the program using CON constant
definitions. While it is possible to put these values in the LOOKUP statement, this makes the statements long. It
also makes it difficult to see what action is performed in a particular state. The constant definitions provide a
way to do this. It is now easy to correlate a particular state such as I 3r 3 with a particular movement, in this
case a nop or no movement. Likewise, | 5r 5 indicates that the Toddler is immediately in front of an obstacle
and | or 0 indicates the Toddler has not located an obstacle within its range.

Program control is returned to the mai n: label after the movement has been performed, and the loop
repeats itself.

goto main

Page 138 - Advanced Robotics with the Toddler 1.0

Experiment #7: Staying on the Table

Challenges

Figure 7.5 shows a lead Toddler followed by a shadow Toddler. The lead Toddler could run any of the prior
programs provided the speed is slower (increase the PAUSE values or decrease the Step values) and the
shadow Toddler is running Program Listing 7.3: Shadow Vehicle. Proportional control makes the shadow
Toddler a very faithful follower. One lead Toddler can string along a chain of 2 or 3 Toddlers. Just add a 4’ x 4”
paper to the lead Toddler’s backside.

Figure 7.5: Lead Toddler and Shadow Toddler

a Ifyou are part of a class, mount paper panel on the back of the lead Toddler as shown in Figure 7.5.

a If you are not part of a class (and only have one Toddler) the shadow vehicle will follow a piece of paper
or your hand just as well as it follows a lead Toddler.

Advanced Robotics with the Toddler 1.0 - Page 139

Experiment #7: Staying on the Table

o The Shadow Toddler should be running Program Listing 7.3 without any modifications.
o With both Toddlers running their respective programs, place the shadow Toddler behind the lead Toddler.

The shadow Toddler follows at a fixed distance, so long as it is not distracted by another object such as a
hand or a nearby wall.

Page 140 - Advanced Robotics with the Toddler 1.0

Appendix A: Parts Listing and Sources

Appendix A: All parts used in the Toddler kit are available individually from the

Parts Listing
and Sources Component Shop enter the name of it in the on-line search box using

Parallax Component Shop (www.parallaxinc.com/componentshop). If
you can't readily find the component you are looking for in the

the stock code.

The Toddler Kit comes in two flavors:

Gold Anodized Toddler Kit - 27310
Blue Anodized Toddler Kit - 27311

Parallax Part# [Description | Qty/Kit
Electronic Components

150-02210 220 Ohm resistors % watt 5% tolerance 4
200-01040 0.1 uF capacitor 2
200-01031 0.01 uF capacitor 2
350-00001 Green LED 2
350-00007 Yellow LED 2
350-00009 Photoresistors 2
350-00014 Infrared detector 4
350-00017 Infrared LED w/ heat shrink tubing 4
550-00020 Toddler Printed Circuit Board with BASIC Stamp 2 1
753-00001 Battery Pack with Tinned Wires 1
800-00016 Jumper wires (bag of 10) 1
900-00001 Speaker 1
900-00010 Parallax Toddler Servo (Toddler Mini F BB) 2
Metal Parts

720-00001 Toddler Top Plate - Gold Anodized 1
720-00002 Toddler Top Plate - Blue Anodized 1
720-00003 Toddler Body - Gold Anodized 1
720-00004 Toddler Body - Blue Anodized 1
720-00005 Toddler Foot - Left Gold Anodized 1
720-00006 Toddler Foot - Left Blue Anodized 1
720-00007 Toddler Foot - Right Gold Anodized 1
720-00008 Toddler Foot - Right Blue Anodized 1
720-00009 Toddler Ankle 2
720-00010 Toddler Legs 4

Advanced Robotics with the Toddler 1.0 - Page 141

Appendix A: Parts Listing and Sources

Hardware
700-00002 3/8" 4/40 machine screw — panhead 10
700-00003 4/40 nut 14
700-00016 3/8” 4/40 machine screw — flathead 6
700-00028 1/4" 4/40 machine screw — panhead 12
700-00060 1" 4/40 aluminum standoffs female/female 4
710-00100 3/16” long 4/40 socket head cap screw — nylon 4
712-00001 1/2" outer diameter flat round plastic washer 4
725-00002 3" long 3/16" outer diamter brass rod 2
725-00003 1/16" ball joints with 2/56 thread (nut, ball joint, cup) 4
725-00004 5.4" long brass rod with 2/56 0.5" thread on each end 2
725-00005 3/32" hex L-key 1
725-00006 3/32" E/Z adjust plastic horn bracket for 4-40 screw 1
725-00007 .072” brass servo horn connector (brass fitting, rubber holder

and small screw) — in a package 1
725-00008 .072” diameter “L” shaped 2" wire 2
726-00001 3/16" collars (4), set screw and wrench 1
Miscellaneous
27218 BASIC Stamp Manual Version 2.0c 1
122-00001 Advanced Robotics with the Toddler Manual 1
123-00001 Toddler Printed Insert 1
800-00003 Serial cable 1
900-00007 The Plastic Box 1
700-00064 Parallax Screwdriver 1

Page 142 - Advanced Robotics with the Toddler 1.0

Appendix B: Toddler Printed Circuit Board Schematic

Appendix B:
Toddler Revision B Printed Circuit Board Schematic

Advanced Robotics with the Toddler 1.0 - Page 143

Appendix B: Toddler Printed Circuit Board Schematic

TV

ﬁM = b i .E 5 i
Pl e D EDEG
E = ﬁ?a T
nag _P:‘
B e
I.r1{= i II: (EARN A :I !
| [S
E'E Fred]| gﬁ_: e
E-E.! :::.|||| ili I | I
Hos) T ST
-) ja_|“1 % |FEEFEieessuapnss]
i '
ESE ms T
}EI— "_j'f g -g-ar.ﬁg':-uzx&é
Rleds i EEEFRESR=S
i —
.?.:[_* aaaaa
BpECERERTaE
oy e UL L
) :' FEF LT
348 351
: 1 ji
g || N
| E;Eﬁﬁﬁﬁﬁﬁﬁ %
.'55}.1 4

"Toddler"
Hew, 0

Parallax, Inc.
ER Mol B ‘Saim T 00
Reckdin, CABETES

. parafasine oom

I vy Slam pairc nss oo

Page 144 - Advanced Robotics with the Toddler 1.0

